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Abstract As hardware and information technology continually advance, virtual reality (VR) has permeated numerous sectors, with
applications becoming increasingly sophisticated. The evolution of VR systems has expanded from the seminal 3I characteristics—
immersion, interaction, and imagination—to encompass 61, incorporating intelligentization, interconnection, and iteration. The intel-
ligentization of VR technology, an inevitable progression, has garnered heightened interest, particularly fueled by the emergence of
artificial intelligence (AI) models and techniques like neural radiance fields, 3D Gaussian Splatting, neural rendering, generative ad-
versarial networks, diffusion models, and large language models, which significantly propel the development of VR’s core and pivotal
technologies. This survey offers a comprehensive assessment of these pivotal VR technologies, harnessing the latest AI advancements,
aiming to provide fresh perspectives and assist new researchers in staying abreast of groundbreaking work. We commence by detailing
the acquisition process of reviewed papers, outlining our taxonomy grounded in VR’s core elements and pivotal technological trajectories,
and statistically analyzing the works within. Subsequently, we delve into the application of AI models, methodologies, and techniques
across six research avenues: advanced Al-generated content representation, content rendering, content generation, physical simulation,
virtual characters, and interaction, discussing their achievements. Concludingly, we summarize our findings, highlight existing challenges,
and suggest potential avenues for future research.
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1 Introduction

As hardware computing power persists in growing, significant advancements in artificial intelligence (AI) technology
have ushered in breakthroughs across all fields of computer science. Researchers have harnessed Al’s learning,
reasoning, and generative abilities in the realm of virtual reality (VR) and associated domains. In 2023, Zhao [1]
noted that virtual reality has evolved from version 1.0 with 31 features (immersion, interaction, and imagination)
to version 2.0 with 61 features, with the newly added 3I features being intelligentization, interconnection, and
iteration. Intelligentization encompasses intelligence in the creation and rendering of virtual content, physical
simulations, avatar modeling, and human-computer interactions. For example, the advent of artificial intelligence
generated content (AIGC) has garnered widespread attention, seamlessly integrating natural language text, images,
and 3D data to swiftly produce high-quality 3D content. This provides a broader array of options for constructing
virtual characters/agents and realistic virtual scenes within VR environments. The implicit depiction of radiation
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fields and the revolutionary concept of neural rendering, epitomized by the neural radiance field (NeRF), harnesses
the full potential of AI’s learning prowess, ushering in fresh perspectives on enhancing the rendering prowess of
VR hardware devices. Furthermore, data-driven deep learning models find their niche in VR human-computer
interaction scenarios, encompassing human body tracking, motion sickness anticipation, and attention analysis,
among others. These models provide invaluable assistance in refining the dynamics of human-computer interaction,
thus enhancing the overall VR experience.

The realm of intelligence in VR research spans a diverse array of disciplines. Several existing reviews encapsulate
the integration of AT and VR technologies across domains like medicine [2], education [3,4], and industry [5], among
others. Additionally, there are reviews that narrowly concentrate on pivotal Al applications within VR, encompass-
ing realms such as advanced rendering techniques [6-8], object/scene generation [9-11], physical simulation [12,13],
virtual character development [14-19], and innovative interaction methodologies [20-23]. Hirzle et al. [24] con-
ducted a meticulous literature survey at the intersection of Al and extended reality (XR), meticulously organizing
and classifying the findings. However, their endeavor primarily emphasized the compilation and categorization of
literature, abstaining from delving into the technical intricacies. Oliveira et al. [25], on the other hand, presented a
comprehensive literature review specifically targeting VR solutions leveraged by Al methods. Instead of categorizing
the literature, they offered a holistic perspective, exploring the AI techniques that are most conducive to VR, the
industries adopting Al in VR-based applications, the advantages and constraints of this integration, the emerging
trends and opportunities it fosters, and the collaborative potential of AT and VR in facilitating smart manufacturing
and logistics. Nonetheless, there remains a notable gap in the literature, as there is a scarcity of review articles
that delve into and consolidate the solutions or optimization strategies brought forth by AI technologies rooted in
the core content and technological underpinnings of VR itself.

In this paper, we embarked on a meticulous selection and analysis of 485 articles, with a focus on the 451
publications spanning the years 2018 to 2024, to provide an up-to-date overview of the pivotal technologies at
the heart of integrating AI methods into VR. Our literature corpus was meticulously curated through a multi-
faceted approach, encompassing keyword-driven searches on Google Scholar and ArXiv, targeted queries in esteemed
databases like IEEE Xplore, Association for Computing Machinery Digital Library (ACM DL), and Springer, as
well as valuable recommendations from seasoned experts across diverse VR disciplines. After a rigorous assessment
of the quality and relevance of the retrieved literature, we meticulously organized and synthesized the findings,
grouping them into distinct research directions within the realm of virtual reality. This structured approach allowed
us to present a comprehensive and nuanced understanding of the current state of research, highlighting the key
technologies and advancements that are driving the integration of AI methods into VR applications.

Indeed, the organization of the selected articles into six distinct research directions—advanced Al-generated con-
tent representation, content rendering, content generation, physical simulation, virtual character, and interaction—
offers a clear and comprehensive framework for examining the latest technological advancements in VR, fueled by
AT theories and methodologies. Each of these directions showcases groundbreaking achievements that underscore
the transformative impact of AI on VR applications. By presenting a summary of the current state of VR research
through an Al lens, our review paper aims to serve as a valuable resource for a diverse audience. Researchers,
both established and those embarking on their VR journey will find insights into the latest trends and challenges
in the field. Graduate and undergraduate students aspiring to pursue VR research will benefit from synthesizing
cutting-edge technologies and their theoretical foundations. Engineers working on developing VR systems will gain
practical insights into how Al can enhance their designs and capabilities. Furthermore, individuals from related
fields, such as artificial intelligence, game design, or human-computer interaction, will also find our review informa-
tive and inspiring, fostering cross-disciplinary collaboration and innovation. Lastly, our outlook on future trends in
VR research powered by Al offers a glimpse into the exciting possibilities that lie ahead, inspiring readers to stay
abreast of the latest developments and contribute to shaping the future of this rapidly evolving field.

In summary, in this AI for VR review, we have made the following contributions. (1) We have compiled the
latest research outcomes on integrating Al in VR, utilizing targeted keyword searches and expert recommendations
to ensure comprehensiveness. (2) We have methodically organized and categorized the interdisciplinary research
content, unraveling the intricate technical pathways from diverse yet interconnected hot topics. (3) We have distilled
the essence of existing Al-driven VR research, offering a holistic overview and a forward-looking perspective on
emerging research directions.
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Table 1 Searching source details.

Database Target Keywords
Collecting papers with high keyword

Source 1 Google Scholar, arXiv relevance and relatively high (virtual reality OR scene
citation counts generation OR avatar OR

Collecting papers in high-quality agent OR simulation OR

.. . journals and conferences: ACM TOG, interaction OR rendering
S ) ACM SD‘g.‘tél Lit?riry’FIEIf.E Xplore, [EEE TVCG, IEEE ISMAR, OR mesh OR model) AND

ouree p““gel\r/HT‘“P’ ronmiers, IEEE VR, SIGGRAPH, CHI, ACM MM, (artificial intelligence OR
ress UIST, NeurIPS, CVPR, ICCV, deep learning OR network

ECCV, AAAI, ICML, ICLR OR neural)
Source 3 Expert Experience Collecting important papers recommended

by experts in the field

2 Methodology

In this section, we describe the scope of the literature survey, the search methodology and the literature database,
and our evaluation methodology.

2.1 Scope

In this review, we will provide an overview of recent research in the field of artificial intelligence and deep learning
applied to VR, with a focus on new methods or optimization techniques, so we start from what is involved in VR
systems and search for literature covering at least one of the elements of virtual scenarios, virtual character, and
human-computer interactions, and we further classify them under more specific elements.

2.2 Search process

Due to the broad scope of the VR domain, we searched Google Scholar!) using keywords covering VR, avatar, agent,
interaction, rendering, scene, and model. We then focused on whether search results included artificial intelligence
technologies, using keywords such as AlI, deep learning, network, and neural. We also kept some of the highly
cited unofficial articles on arXiv? in the search results. Moreover, we searched the digital libraries of the ACM
DL?, IEEE Xplore?), Springer Link®, Frontiers®), and MIT Press”). We selected these databases because they
cover major conferences like IEEE ISMAR and IEEE VR, as well as journal articles like IEEE TVCG. Additionally,
significant contributions in virtual scene rendering and generation research can be found in artificial intelligence
and computer vision journals and conferences such as CVPR, ICCV, and NeurIPS. The team of authors of this
paper is also researchers in different directions of VR, and each author recommends some of the most classic or
latest research articles that are closely related to his/her research direction. Table 1 gives the source details of the
articles we cite.

We focus on relevant papers published between 2018 and 2024. This timeframe represents the boom period of
Al research, and also comprehensively covers the crossover development stage between Al and VR.

2.3 Relevancy and quality assessment

We used some rules to evaluate the relevance and quality of the searched papers to filter the references cited in this
paper.

Relevance assessment. To ensure that the screened references are within the scope of this review, we need to
assess the relevance of the collected literature by addressing the following questions and keep the articles of high
relevance as the subject of review in this paper.

(1) Does the research in this article belong to a particular direction in the VR field?

(2) Does this article utilize new AT techniques to solve problems in the VR field?

During the evaluation process, we found two issues that need attention.

(1) Because in keyword search, different popularity and bias of keywords may reduce the accuracy of search
results. For example, keywords such as “simulation” and “modeling” may retrieve results from other research areas.

1) https://scholar.google.com/.
2) https://arxiv.org/.

3) https://dl.acm.org/.

4) https://ieeexplore.ieee.org/.
5) https://link.springer.com/.
6) https://www.frontiersin.org/.
7) https://mitpress.mit.edu/.
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Figure 1 (Color online) Word cloud map of hot words in the titles of the reviewed papers.
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We need to ensure that the search results are not overly biased in favor of Al techniques themselves, and we also
need to exclude VR research based on traditional methods.

(2) Since we are using a combined search for virtual reality keywords and AI keywords, the search results also
include articles that utilize virtual reality technology to generate training set data that can help AI train high-quality
models. Given the goals of this paper, we also needed to exclude articles containing such content.

Quality assessment. After doing the relevance assessment, the quality assessment mainly focuses on finding high-
quality and influential articles on new theories and methods of using AI methods to solve problems in VR. In the
face of articles with similar research content, our selection priority is: expert-recommended articles from Source 3
are preferred; papers published in authoritative journals/conferences in the relevant fields from Source 2 are second
because their academic rigor and authority have been verified; and lastly, articles found in Google Scholar or arXiv
from Source 1 and with citation number greater than 10 are evaluated, because the content of these articles has
been paid attention to by a larger number of researchers.

Finally, a total of 485 papers were obtained through the search, recommendation, relevancy, and quality as-
sessment processes. We extracted the keywords in the titles of these papers, counted the word frequencies, and
visualized the top 50 words as in Figure 1. The top ten words and occurrences are: neural 77, learning 47, model
43, NeRF 33, differentiable 31, Gaussian 27, diffusion 26, field 24, network 24, deep 23.

Items need to be clarified. (1) The counts of occurrences of NEURAL and FIELD exclude the NEURAL RADI-
ANCE FIELD. (2) The counts of occurrences of LEARNING exclude the counts of MACHINE LEARNING and
DEEP LEARNING. (3) The counts of occurrences of MODEL exclude the counts of the large language model. (4)
The statistics of NeRF occurrences include NeRF and neural radiance field. (5) The statistics of DEEP occurrences
exclude DEEP LEARNING. These high-frequency terms appearing in the titles of the papers indicate hotspots for
research on Al models, methods, and techniques in VR.

3 Classification and statistics

Virtual scenes, virtual characters, and interactions are the most important core elements of virtual reality systems.
These elements create a deep immersive experience that makes users feel like they are in a completely virtual
environment. Therefore, we will further categorize the tasks of existing Al applications in virtual reality from these
three perspectives: virtual scenes, virtual characters, and interactions. Figure 2 gives a taxonomy of tasks related
to the core elements of virtual reality where Al algorithms are currently better applied. Due to the complexity of
the virtual scene, we divided it into four sub-fields and summarized the hot Al-related directions in each sub-field.

Virtual scene. Virtual scene is the basis for creating an immersive virtual reality experience, usually a virtual
world created through computer graphics technology, computer vision technology, etc. It can be a simulated real-life
scene or a completely imaginary environment. Artificial intelligence applications in this domain include everything
from scene generation to rendering. We classify existing virtual scene tasks into four categories: (1) advanced
Al-generated content representation, (2) content rendering, (3) content generation, and (4) physical simulation. In
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Figure 2 (Color online) Taxonomy of tasks.

scene representation, Al efficiently represents highly realistic scenes by constructing forms of complex environmental
features that can be learned and simulated with neural networks. This representation not only enhances the scene’s
realism but also optimizes data storage and processing. In scene rendering algorithms, Al optimizes the entire
rendering process by designing novel neural network architectures or data structures to accelerate the rendering
process and improve visual quality. In scene generation algorithms, AI utilizes techniques such as generative
adversarial networks and diffusion models to understand and reproduce real-world environmental features by training
models. As a result, Al can generate realistic and detailed virtual environments and automatically create new scenes,
thus reducing tedious and lengthy human overhead. Al creates more accurate and realistic physics effects in physics
simulation algorithms by introducing new parameter estimation and pattern-learning methods to make virtual
environments react more naturally.

Virtual character. Al plays a crucial role in the creation and behavioral simulation of virtual characters,
enhancing their realism and interactivity. We classify the applications of Al in virtual character development into
three categories: (1) motion generation, (2) avatar creation, and (3) autonomous agent. In motion generation,
AT is used to interpret textual descriptions or to analyze audio inputs and generate corresponding movements
for virtual characters, creating dynamic and contextually appropriate animations, enabling virtual characters to
respond naturally to auditory stimuli and enhancing their interactivity. For avatar creation, Al-driven human
reconstruction techniques focus on accurately mapping the geometric and texture details from real-world subjects,
ensuring that the virtual representations are detailed and true to life. This precise modeling lays the groundwork for
animatable avatars, which leverage Al to incorporate realistic animations and versatile movements, thus facilitating
more engaging and personalized user interactions. In the area of autonomous agents, Al is used in crowd simulation
algorithms to simulate the dynamic behaviors of large-scale virtual crowds, managing path planning and collision
avoidance to ensure the naturalness and logic of group movements. Additionally, autonomous characters utilize Al
behavioral inference models to predict and interpret actions, enabling them to make reasonable responses based on
environmental changes and user inputs.

Interaction. Interaction is a pivotal element in user engagement with virtual content, functioning as the primary
interface through which the virtual world is experienced. Al’s impact permeates a wide spectrum of user interaction,
from the recognition of user behaviors to the optimization of interaction techniques and the enhancement of overall
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Table 2 Paper citations in sub-sections.

Section Category Refs.
REVIEW [1-29]
4.1 Neural radiance field [30-34]
4.2 3D Gaussian [35-39]
5.1 Differentiable rendering [40-61]
5.2 NeRF rendering [62-95]
5.3 3D Gaussian Splatting [96-111]
5.4 Material representation and operations [112-132]
5.5 Light transport computation [133-156]
5.6 Rendering post-process [157-181]
6.1 Generative models [182-191]
6.2 Object generation [192-242]
6.3 Scene synthesis [243-257]
7.1 Rigid-body simulation [258-263]
7.2 Soft-body simulation [264-281]
7.3 Fluid simulation [282-306]
7.4 Other physical simulation [307-316]
8.1 Motion generation [317-349]
8.2 Avatar creation [350-402]
8.3 Autonomous agent [403-422]
9.1 Behavior recognition [423-456]
9.2 Interaction optimization [457-473]
9.3 Perception analysis and enhancement [474-485]

perception within virtual environments. We explore Al’s contributions across three critical areas: (1) behavior
recognition, (2) interaction optimization, and (3) perception analysis and enhancement. In behavior recognition, Al
utilizes advanced neural networks, such as convolutional neural networks (CNNs), to precisely estimate and track
user movements, including those of the hands, eyes, and facial expressions. This capability allows the virtual system
to convert physical actions into meaningful digital inputs, fostering a more natural and responsive interaction with
the virtual environment. Additionally, machine learning algorithms are deployed to deduce users’ intentions based
on their physical movements, thereby improving the accuracy and reliability of interaction inputs. In interaction
optimization, Al mainly employs reinforcement learning and neural networks to enhance interaction methods within
the constraints of physical space and hardware limitations. These techniques are meticulously designed to augment
the intelligence and immersion of user interactions, broadening the possibilities within virtual environments and
making user interactions more seamless and intuitive. In perception analysis and enhancement, AT utilizes a diverse
array of contextual data, including sensor inputs and user behaviors, to model users’ emotions and experiences.
This process is primarily driven by machine learning regression models such as support vector machines (SVM) and
random forests (RF). Through this analysis, AT enables the evaluation and optimization of virtual content quality,
resulting in more personalized and enriched experiences that are finely tuned to the unique needs and preferences
of individual users.

Based on the above taxonomy, we categorized our collection of 485 papers in Table 2 [1-485] to facilitate readers’
quick access to papers relevant to the task of interest. Each category in the table corresponds to the secondary
heading of our review. We also give a histogram of the distribution of the papers selected in the chapters corre-
sponding to each secondary heading, guided by the above taxonomy (Figure 3). From this histogram, it can be seen
that the number of papers we reviewed for section object generation and section avatar creation is greater than or
equal to 50 papers, much more than the number of papers in other sections. This is because these two sections
are now hot topics in VR, graphics, and 3D CV research, with numerous technological advances. In section neural
radiance field and section 3D Gaussian, we only discuss the papers that first proposed these two representations
and the paper that derived the principle of 3D Gaussian projection, and we put the other papers that modified
these two representations to improve the quality or speed of rendering, as well as generalizing the scene, into the
later sections NeRF rendering and 3D Gaussian Splatting to discuss in detail.

We also grouped the reviewed papers according to when they were accepted or published and gave a histogram of
the distribution of the number of articles under different years (Figure 4). It is not difficult to see that the research
on the application of Al technology in the field of VR is heating up year by year. Meanwhile, we are more inclined
to review the latest papers, with the papers after 2020 reaching nearly 70% of the total number of papers reviewed.
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Figure 4 (Color online) Number of articles per year.

We grouped these papers according to the international journals and conferences in which they were submitted
or published. Figure 5 gives a histogram of the distribution of the number of journals or conferences to which the
papers we reviewed belong.

As can be seen from Figure 5, the papers we selected and reviewed are of high quality, with a large number of
papers originating from ACM TOG, the top journal in graphics, and CVPR, the top conference in computer vision.
Since the readers of this paper may have different research backgrounds, we also grouped the involved journals and
conferences according to their fields, which include virtual reality, human-computer interaction, computer graphics,
computer vision, and artificial intelligence.

The subsequent sections of this paper are organized as follows. Section 4 presents an overview of advanced Al-
generated content representation. Section 5 reviews research related to content rendering, while Section 6 examines
content generation approaches. Section 7 focuses on physical simulation techniques. Section 8 discusses virtual
characters, and Section 9 explores interaction mechanisms. In Section 10, we summarize the current state of
research in each area, outline key challenges, and propose potential directions for future work. Finally, Section 11
provides the concluding remarks.
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4 Advanced Al-generated content representation

In recent years, NeRF and 3D Gaussians, as advanced 3D content representation specifically designed for Al
algorithms, have fully utilized the ability of deep learning models to process complex data and learn complex
tasks by virtue of good end-to-end trainability, high flexibility, and adaptability, fine spatial representation, and
gradient conductivity, and have been used in the fields of virtual reality, graphics, and computer vision attracted
wide attention and applications. In this section, we will focus on reviewing and discussing these two advanced
Al-generated content representations.

4.1 Neural radiance field

Neural radiance field was first proposed by Mildenhall et al. [30] in 2020. The core concept of NeRF is to represent
a scene as a function of 3D locations and viewing directions by combining volume rendering techniques with
typically implicit neural representations using multi-layer perceptrons (MLP), termed as a radiance field. This
implicit radiance field representation optimizes network parameters using a set of images with known camera poses,
enabling the learning of both geometric and photometric properties of 3D environments. For a 3D location (x,y, z)
and a view direction (0, ¢), NeRF transforms the 5D vector with an MLP network Fo : (x,y, 2,0, ¢) — (o,¢), to get
its corresponding volumetric density and view-dependent color. Then, employs a classic volume rendering algorithm
to synthesize images from arbitrary new views. Figure 6 shows the overview of NeRF representation.

4.1.1 NeRF construction

Given a set of RGB images and the corresponding 6 degrees of freedom camera calibration parameters as inputs,
NeRF outputs a representation of the geometry and appearance of a 3D scene. The geometric information is
represented as a one-dimensional density value o, and the appearance information is represented as multidimensional
color features c¢. The color features ¢ are then combined with the view direction d input into another MLP to obtain
the view-dependent color feature vector. All these properties can be learned and optimized through gradient
backpropagation. NeRF representation trains a network to map the 3D Cartesian coordinate into scene geometry
and appearance. This neural network-based representation maintains multi-view consistency by decoupling the
prediction of volume density o from the view direction (6, ¢), while allowing color ¢ to depend on both the view
direction (6, ¢) and the 3D position (z,y, z). Specifically, this is achieved by designing two MLPs: the first MLP
takes (x,y, z) only as input and outputs density o and a high-dimensional feature vector, which indicates the view-
independent color feature vector. This feature vector is then concatenated with the view direction (6, ¢) and passed
to the second MLP, which outputs the view-dependent color c.

In traditional NeRF algorithms, the sampling process is divided into two stages: the coarse stage and the fine
stage. During the coarse stage, the importance weight w; of each sampling point is used as a piecewise constant
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Figure 6 (Color online) An overview of NeRF scene representation and differentiable rendering procedure in the work of Mildenhall et al. [30].
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using NeRF MLP(s); (c) the generation of individual pixel color(s) using in-scene colors and densities along the associated camera rays via
volume rendering; (d) the comparison to ground truth pixel colors.

PDF along the ray to guide the location distribution of the sampling points in the fine stage. During the fine stage,
sampling is concentrated in areas of higher density identified in the coarse stage, ensuring that the sampling points
used for synthesizing the final color are distributed across the object’s surface. Subsequently, the sampling points
from the fine stage are used to compute the predicted color of pixels, according to the volume rendering integral
in Figure 6(c). The training process involves optimizing the parameters of the neural network, minimizing the
difference between predicted images and ground truth images for each pixel using a mean squared error (MSE) loss
(Figure 6(d)), as shown in (1).
. 2
L:ZHC(r)—C(r)H2, (1)
rckR

where C' (r) represents the predicted color of the pixel corresponding to the sampled camera ray r, which is integrated
by the sampled ¢ along r. R is the batch of sampled rays, and C(r) is the ground truth.

4.1.2 Construction acceleration

Traditional implementation of NeRF is plagued by excessively long training durations. Current studies on acceler-
ating NeRF training primarily focus on identifying a more efficient scene representation to replace the parameter-
intensive MLP. Point-NeRF [31] employs feature point clouds as an intermediary step in volume rendering. A
pre-trained 3D CNN is utilized to generate depth and surface probability v from cost volumes created from training
views, resulting in the generation of dense point clouds. Point-NeRF represents a volumetric radiance field using
a neural point cloud, facilitating highly efficient scene reconstruction through optimizations that take only 20—
40 min per scene, in contrast to the original NeRF’s requirement of over 20 h. Fridovich-Keil et al. [32] introduced
the Plenoxels, which represent scenes as sparse 3D voxel grids, with each voxel storing density and spherical har-
monic coefficients. This representation can be optimized directly on the voxel grid from calibrated images through
gradient and regularization optimization, entirely bypassing MLP training. The voxel training process begins with a
lower-resolution dense grid, optimizes and eliminates unnecessary voxels, refines the remaining voxels by upsampling
in each dimension, and continues optimization. This method has reduced the training time of NeRF to 12 min.

To achieve a method that can be trained quickly and does not require extensive storage space during the training
process, Chen et al. [33] proposed the TensoRF model. Addressing the inefficient use of voxel grids in training by
previous methods, TensoRF models the scene’s radiance field as a 4D tensor, representing the 3D voxel grid with
multi-channel features for each voxel. Subsequently, conventional tensor decomposition algorithms are used in the
radiance field modeling process, decomposing the full tensor of the radiance field into multiple compact, low-rank
tensor components. Tensor decomposition algorithms can reduce dimensionality and compress data, achieving fast
reconstruction speeds of less than 10 min while reducing spatial occupancy during modeling. Miiller et al. [34]
proposed Instant-NGP, a learnable, parametric multi-resolution hash encoding that is trained concurrently with
NeRF’s MLPs. Through this parametric approach, combined with advanced ray marching techniques, including
exponential stepping, skipping empty spaces, and sample compression, Instant-NGP reduces training time to just
a few seconds.
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Figure 7 (Color online) 3D Gaussian representation in the work of Kerbl et al. [35]. Optimization starts with the sparse SfM point cloud and
creates a set of 3D Gaussians. Then, Gaussians are optimized and adaptively control the density. During optimization, a fast tile-based renderer
is first used.

4.2 3D Gaussians

Kerbl et al. [35] introduced an advanced, explicit scene representation with 3D Gaussians to efficiently render
complex scenes with a high degree of detail in 2023. The core concept of this 3D Gaussian representation is to
depict a scene as a set of learnable three-dimensional Gaussian ellipsoids. Each Gaussian ellipsoid is characterized
by its position (center) p, opacity «, 3D covariance matrix Y, and color ¢. ¢ is represented by spherical harmonics
for view-dependent appearance. The position, size, and orientation properties learn the scene’s geometry, while the
color and opacity properties learn the photometric properties of the scene.

A Gaussian can be defined by a full 3D covariance matrix ) defined in world space centered at point p with

G(z) = e 2(@"E7 (@), (2)

By skipping the third row and column of >, the 2x2 variance matrix has the same structure and properties.
However, covariance matrices have physical meaning only when they are positive semi-definite. The gradient
descent cannot be easily constrained to produce such valid matrices, and update steps and gradients can very easily
create invalid covariance matrices. To contain the positive semi-definite of the covariance matrices, Kerbl et al. [35]
used an ellipsoid to represent a 3D Gaussian, because the covariance matrix > of a 3D Gaussian is analogous
to describing the configuration of an ellipsoid. Given a scaling matrix S and rotation matrix R, the >  can be
computed with

> =RSS"R". (3)

Since the Gaussian ellipsoid has a density property, 3D Gaussian can represent not only the effect produced by
light interacting with the scene’s surface but also the effect of light passing through an object. Compared with
NeRF, 3D Gaussian can efficiently and accurately represent geometric shapes and appearance properties. Figure 7
shows the overview of 3D Gaussian representation. 3D Gaussian overcomes the limitations of volumetric rendering
methods and enables a more flexible and adaptive representation of 3D objects. Additionally, 3D Gaussian can be
used to render various visual effects such as depth of field and soft shadows, making it an important representation
for VR applications.

4.2.1 3D Gaussian construction

The process of 3D Gaussian construction is essentially a training process. This process takes a set of images with
corresponding camera poses as input and outputs a set of 3D Gaussians. All the properties of 3D Gaussians can be
learned and optimized by gradient back-propagation.

3D Gaussian is first initialized with the SfM points, which are a set of sparse points. Then, the Gaussians are
rendered using differentiable rasterization to generate the rendered image. Next, the loss is computed based on the
rendering and ground-truth images, and the properties of Gaussians are optimized based on the loss. The loss L
contains L1 loss and D-SSIM loss shown as

L=(1-X)L1+ ALpgsim- (4)

Due to the ambiguities of 3D to 2D projection, geometry may be incorrectly placed. Thus, an adaptive den-
sity control algorithm is applied to create, destroy, or move geometry if it has been incorrectly positioned. This
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algorithm has three components: clone, split, and prune. This algorithm first detects under-reconstruction and over-
reconstruction regions based on view-space positional gradients. Then, for Gaussians in the under-reconstruction
region, it clones the Gaussians by creating a copy of the same size and moving it in the direction of the positional
gradient. For Gaussians in the over-reconstruction region, it replaces them by two new ones and divides their scale.
To moderate the increase in the number of Gaussians, this algorithm also removes Gaussians with less density.

4.2.2  Construction acceleration

One of the great advantages of 3D Gaussian representation is that the integral of a 3D Gaussian along a certain
axis is a 2D Gaussian; thus one sample is needed for one 3D Gaussian, which allows 3D Gaussian Splatting to have
higher performance than NeRF. However, in construction, the depth sorting for each pixel during rasterization is
time-consuming. To accelerate construction, Kerbl et al. [35] proposed a tile-based parallel computation method.
To avoid the computational cost of deriving a Gaussian for each pixel, this method shifts the accuracy from the
pixel-level to the patch-level detail. Specifically, it first divides the image into multiple non-overlapping patches
called “tiles.” Each tile consists of 16x 16 pixels. Then, it determines which tiles intersect these projected Gaussians,
duplicates the Gaussians that cover more than one tile, and assigns each copy an identifier (i.e., a tile ID) for the tile.
Next, it combines the respective tile IDs with the depth values obtained from each Gaussian view transform and
gets an unsorted list of bytes, where the high bit represents the tile ID and the low bit represents the depth. Then,
it sorts the list, and the sorted list can then be used directly for alpha synthesis. To speed up the construction,
each tile and pixel is rendered independently, so the process is accelerated in parallel. In addition, the pixels of each
tile have access to the common shared memory and maintain a uniform read order, thus improving the efficiency of
parallel execution of alpha synthesis.

In order to represent large and dynamic scenes accurately, millions of Gaussians are needed to represent the
scene, which still takes a significant amount of time to build, even with the tile-based parallel computation method
described above. Therefore, it is crucial to reduce the modeling time while maintaining the modeling accuracy.
There are three main directions to improve the construction efficiency.

The first direction involves reducing the number of 3D Gaussians, i.e., pruning insignificant 3D Gaussians.
Lu et al. [36] proposed Scaffold-GS, which constructs efficiently while maintaining comparable modeling quality.
Scaffold-GS utilizes the underlying scene structure to guide the pruning of overextended Gaussian spheres. It uses
initialization points from the motion structure to build a sparse mesh of anchor points and attaches a set of learnable
Gaussian balls to each anchor point. The properties of these Gaussians are predicted on the fly based on specific
anchor point features. In addition, a strategy guided by the aggregated gradient of the neural Gaussian is used to
add anchor points. An additional volumetric regularization loss term is added to encourage Gaussian minimization
and minimize overlap.

The second direction focuses on improving the construction efficiency by compressing 3D Gaussian properties.
Katsumata et al. [37] proposed to reduce the time required to construct the 3D Gaussians for dynamic scenes. It
categorizes Gaussian parameters into time-invariant and time-varying parameters. The former contains position
and rotation parameters, which are estimated by Fourier and linear approximations, respectively. This approach
effectively reduces the time during construction compared to constructing each parameter at each time step. In
addition, the flow information overcomes the ambiguity between consecutive frames with different time steps by
means of a loss term. Fan et al. [38] proposed the LightGaussian to improve construction efficiency. It first
evaluates the global importance of each Gaussian based on its contribution to each pixel in all training views.
The computed score is then used to remove unimportant Gaussians. In addition, it reduces the degree of the
spherical harmonic coefficients by data distillation and quantizes the coefficients of trivial Gaussians. In addition,
the positional parameters are compressed by a lossless octet-based algorithm, and the remaining attributes are
saved in a half-precision format.

The third direction is to model the scene with different levels of precision and select different levels according to the
desired modeling quality during construction. Kerbl et al. [39] proposed the Hier3D-
Gaussian, which models the scene with a hierarchy of 3D Gaussians and uses a divide-and-conquer strategy for accel-
erating construction. Hier3DGaussian first divides the 3DGSs into multiple axis-aligned bounding boxes (AABBs)
containing only one Gaussian based on its spatial location by the division method and uses these AABBs contain-
ing only one Gaussian as leaf nodes, and takes each intermediate AABB in the division process as an intermediate
node. The process of division is top-down, and when the division process is complete, a multi-layered binary tree is
constructed. Each node of the tree is an AABB, and the leaf node contains only 1 Gaussian. Then, Hier3DGaussian
calculates the Gaussian properties of each intermediate node based on the Gaussian properties of the leaf node from
the bottom upward. After that, a hierarchy of 3D Gaussians is constructed, with the initial 3D Gaussian at the
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Table 3 Summary of studies related to content rendering.

Material & lighting

Entangled Disentangled
Novel view synthesis (NVS) NVS with edition Material model Light transport
[112-114, 116, 118~

Mesh rendering N/A N/A 120,124,128, 131] [115,124,135-149, 151-154]
[30-34,62-65,69-72,74,75,79, 84,

NeRF rendering 88.91-93.95.111. 186. 245. 249. 377 [83,86,87,280,312] (89,90, 205] [89,90]
388-391]

. . [35,36,38,39,97-100,102,104-108,
Gaussian Splatting 210, 225, 306] [101, 103,314, 379] [109,110] [109,110]

bottom layer and the intermediate 3D Gaussian obtained by aggregation in the middle layers. For large scenes,
Hier3DGaussian first divides the scenes into chunks and then constructs 3D Gaussians for each chunk in parallel.

5 Content rendering

3D content rendering is the key to achieving realistic visual effects in VR systems, which can significantly enhance
users’ immersion and enable them to experience near real-world sensations in the virtual world. Deep learning
methods improve visual quality by optimizing the rendering pipeline, achieving significant breakthroughs in detail
and realism. At the same time, these methods can also improve rendering efficiency, which enables the virtual reality
system to respond to user interactions at a higher speed, ensuring the smoothness and interactivity of the virtual
reality experience and enabling users to freely explore in a more realistic and dynamic virtual environment, thus
obtaining a deeper level of immersive experiences. We present a taxonomy of content rendering methods in Table 3,
organized by two dimensions: rendering method (vertical axis) and appearance models (horizontal axis). In terms of
rendering methods, we consider three types: mesh rendering, NeRF rendering, and Gaussian Splatting. Regarding
appearance models, there are mainly two schemes: the material and lighting are decoupled or entangled, where the
former line mainly focuses on the novel view synthesis (NVS) task or with further editing, and the latter group aims
at the reconstruction and relighting task, requiring to model both the materials and the light transport. Note that
we did not include mesh-based methods that entangle material and lighting since they are less relevant to the topic
of this paper. In the following subsections, we first review these three rendering methods and then discuss material
representation, operations, and light transport computation. Finally, we discuss rendering post-processing.

5.1 Differentiable rendering

Traditional rendering approaches generate images by simulating light transport in 3D scenes. In contrast, differ-
entiable rendering not only produces rendered images but also computes their derivatives with respect to (w.r.t.)
various properties. Here, the properties include geometries, materials, camera pose, and image space properties.
When derivatives of different properties are available, they can be used for gradient-based optimization or backprop-
agation in neural networks, enabling various applications, such as content generation, 3D reconstruction, appearance
capture modeling, and inverse optical design in virtual reality. While some previous studies focus on designing a
particular differentiable pipeline for the downstream task, others target general-purpose differentiable rendering
systems or methods. In this section, we focus on the latter category.

Differentiable rendering can be applied for different geometry representations (e.g., mesh, volume, or implicit
representations) or different rendering methods (e.g., rasterization or ray tracing). At the core of differentiable
rendering on different representations or rendering methods is how to handle discontinuous properties. In this paper,
we categorize these methods into two groups, depending on their primary purpose: image quality or performance.

5.1.1 Physically based differentiable rendering

Previous studies introduce differentiation into the Monte Carlo raytracing, path tracing, or more advanced volu-
metric light transport algorithms. These methods can model complex light transport, like global illumination and
occlusion, at the cost of introducing noise and long converging time.

Li et al. [40] presented differentiable Monte Carlo ray tracing by edge sampling that directly samples the Dirac
delta functions introduced by the derivatives of discontinuous integrals. Later, Loubet et al. [41] proposed repa-
rameterization to handle the non-continuous visibility computation, which is also used in Mitsuba 2 [42]. While
its solution significantly improves the performance, it introduces bias and is limited to unidirectional path tracing.
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Xu et al. [43] extended the hemispherical-integral reparameterization [41] into the path space, allowing advanced
Monte Carlo rendering methods. Zhang et al. [44] established the differential path integral formulation, including
interior and boundary components, which can be estimated by both differentiable unidirectional path tracing and
bidirectional path tracing, achieving unbiased and efficiency on complex light transport. The differentiable formu-
lation is later generalized to handle participating medium [45] and implicit surfaces [46] by introducing new Carlo
estimators for sampling implicitly specified discontinuity boundaries.

Physically based differentiable approaches rely on Monte Carlo based estimators, leading to the typical noise issue.
To reduce noise, advanced sampling techniques or other strategies (e.g., temporal reusing or blurring) have been
introduced. Different from forward Monte Carlo rendering, values of the derivative function might be negative,
causing difficulties in sampling. For that, Zhang et al. [47] introduced an antithetic sampling of BSDFs and
light-transport paths, allowing significantly faster convergence. Recently, reservoir-based spatiotemporal resampled
importance resampling (ReSTIR) has also been introduced into gradient computation by Wang et al. [48] and
Chang et al. [49] to reduce the noise of gradient images. Besides sampling, Fischer et al. [50] proposed to convolve
the high-dimensional rendering function with an additional kernel that blurs the parameter space, together with
two Monte Carlo estimators for efficiently computing plateau-reduced gradients, showing benefits on complex light
effects, such as caustic or global illumination. To improve convergence in inverse rendering optimizations, Xing et
al. [51] proposed to compute derivatives on visible 3D geometric points rather than on pixels and compute the 5D
RGBXY derivatives (3D for RGB color and 2D for projected screen-space position) w.r.t. scene parameters, leading
to superior convergence. To handle complex light transport with specular effects in inverse optimization, Xing et
al. [52] introduced extended path space manifolds for path derivative computation.

Besides reducing noise, memory cost is another issue for differentiable rendering. For that, Vicini et al. [53]
proposed path replay backpropagation, which recovers quantities needed for reverse-mode differentiation using the
invertibility of the local Jacobian at scattering event, leading to constant memory and linear (in terms of the
scattering event) computation time is linear in the number of scattering events (i.e., just like path tracing).

5.1.2  High performance differentiable rendering

While the physically based differentiable rendering approaches aim at high-quality derivative computation, the other
line of studies’ purpose is high performance by applying differentiation into the rasterization pipeline (e.g., vertex
shading, primitive assembly, geometry shading, etc.) at the cost of missing some light effects (e.g., occlusion, or
global illumination).

Early research in differentiable rendering primarily relied on methods such as local derivative approximations,
smooth rasterization, and probabilistic rasterization. Among this group, OpenDR [54] is the first general-purpose
differentiable renderer, despite its simplified shading model. Kato et al. [55] introduced a smooth rasterization by
smoothing the influence of vertex movements on pixels and deriving an approximate method for calculating the
pixel-to-vertex coordinate derivatives while maintaining the forward rendering unchanged, leading to the risk of
inconsistency between the rendered image and the gradient. Liu et al. [56] proposed a probabilistic rasterization
method that modifies the rasterization and z-buffering steps using probability distributions. Their approach ensures
that the forward rendering process is fully differentiable. However, the blur operation might lead to unexpected
transparent surfaces for opaque surfaces. Genova et al. [57] utilized barycentric coordinate interpolation of vertex
attributes to compute pixel colors, performing well in scenarios with smooth and simple occlusion boundaries but
struggling with complex, overlapping occlusion boundaries. More efforts [58-60] have been made by exploring
efficient and approximate methods for rendering and gradient computation.

While it is challenging to keep scalability, flexibility, and other features (e.g., antialiasing) for this group of meth-
ods, Nvdiffrast [61] is an exception, which supports a full package of operations, including rasterizing large numbers
of triangles, attribute interpolation, filtered texture lookups, user-programmable shading, and geometry processing,
although global illumination is not supported. Therefore, it is still being used in many practical applications.

5.2 NeRF rendering

The basic rendering pipeline of the trained NeRF representation is as follows. (1) For a given 6-DoF camera pose,
generate camera rays corresponding to each pixel in the two-dimensional screen space. (2) For each camera ray,
generate a set of sampling points along the ray. (3) For each sampling point, input the corresponding ray direction
(0, ¢) and the 3D position (x,y, z) into the trained NeRF MLP to calculate the color ¢ and density o. (4) Using the
volume rendering formula as illustrated in Eq. (5), accumulate the color and density of all sampling points along
the ray to compute the color of the pixel corresponding to the ray. (5) Repeat steps (2)—(4) for all camera rays to
generate the final rendered image.
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Rendering equation. To compute the color of each pixel corresponding to each ray r passing through the
scene, classic ray marching and volume rendering formulas are used to describe how light traverses and interacts
with the scene’s surface shown as

N

C(r) = S Ti(1 — exp(~0idi))es, (5)
i=1

Ti = exp —in(Sj 5 (6)

where C (r) represents the predicted final color of the pixel corresponding to the camera ray r, o and ¢ represent the
volume density and the color of the sampling points predicted by the MLP, and § represents the interval between
adjacent sampling points. 7T; represents the accumulated transmittance, describing the occlusion conditions when
the ray steps to the ith sampling point. Additionally, some methods often refer to the product terms beyond ¢ as
the importance weight w;,

w; = T;(1 — exp(—0id;)), (7)

representing each sampling point’s contribution to the final color C(r).

5.2.1 Acceleration techniques

The design of efficient computational processes is crucial for the application of NeRF representations in VR. In the
process of image generation by traditional NeRF [30], each pixel necessitates approximately 200 forward predictions
by an MLP deep learning model. Although the computational scale of a single calculation is modest, the cumulative
computational load for rendering an entire image through per-pixel calculations becomes substantial. Currently,
mainstream studies to accelerate NeRF inference primarily focus on model baking, which precomputes NeRF and
stores the results in efficient explicit data structures, thus avoiding dense MLP inference during real-time rendering.
Additionally, techniques that accelerate ray marching, such as early termination and skipping empty spaces, are
also utilized to further increase the inference speed of NeRF.

DIVeR [62] performs deterministic ray sampling on a voxel grid, generating an integrated feature for each ray
interval (defined by the intersections of the ray with voxels), which is then decoded by an MLP to produce the
density and color for the ray interval. This effectively inverts the traditional sequence between volumetric rendering
and MLP inference. Experimental results indicate that this method surpasses others, such as PlenOctrees and
FastNeRF, in terms of rendering quality while maintaining a comparable rendering speed. SNeRG [63] pre-calculates
diffuse color, density, and specular reflection feature vectors and stores them in a sparse voxel grid. At the time
of inference, these feature vectors are processed through a lightweight MLP to produce specular reflection colors,
which are subsequently alpha-blended with the specular colors along the ray, culminating in the generation of
the final pixel color. SNeRG is 3000 times faster than the original NeRF while achieving higher quality results.
PlenOctree [64] trains a spherical harmonics NeRF, referred to as NeRF-SH, which predicts the spherical harmonics
coeflicients of the color function instead of directly predicting the color function itself. Additionally, an octree based
on MLP-precomputed spherical harmonics coefficients is constructed. Garbin et al. [65] introduced the FastNeRF
technique, which accelerates the rendering time of NeRF to 200 FPS by caching the inferred color and density
results of the scene within a dense grid. This method also leverages a hardware-accelerated ray tracing strategy,
enabling it to bypass empty spaces and halt prematurely once the transmittance along the ray reaches saturation.

5.2.2  Foveated NeRF rendering

Foveated rendering is a pivotal technique for VR and AR applications aimed at reducing computational load and
enhancing rendering performance. Potter et al. [66] demonstrated that the human visual system’s (HVS) tolerance
threshold for visual latency is approximately 13 ms, suggesting that excessive rendering delays in VR can lead to
a perceived inconsistency between content and interaction, thereby causing discomfort. The HVS model is closely
related to neuroscience and cognitive science. Its core objective is to understand the biological mechanisms of visual
information processing based on the characteristics of the human visual system and apply them to technological
development. In the human visual system, the distribution of optic nerve projections on the retina is uneven—
50% of them are concentrated in the fovea, while the rest are distributed in the peripheral region [67]. This
characteristic results in clear perception in the central area and blurred perception in the peripheral area when
observing a scene [68], providing insights for accelerating rendering. Foveated rendering achieves acceleration by
rendering different image qualities for different regions. The most representative HVS models in foveated rendering
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Figure 8 (Color online) Visual acuity adaptive synthesis and rendering mechanism in Fov-NeRF in the work of Deng et al. [69]. Elemental
images are synthesized from an egocentric neural representation for the fovea, mid-periphery, and far-periphery. These images are then blended
into the final displayed frame.

are the visual acuity model and the contrast sensitivity model. The visual acuity model describes the attenuation
of visual acuity as the distance from the central line of sight increases. Deng et al. [69] were the first to combine
the NeRF model with the foveated rendering technique, proposing the FoV-NeRF method. Figure 8 visualizes the
FoV-NeRF method rendering pipeline. This method employed a concentric sphere coordinate system to represent
the 3D radiance field, thereby optimizing the ego-centric view while significantly reducing the inference runtime of
the neural network. It derived a spatiotemporal awareness model from the optimized neural scene representation to
minimize imperceptible losses in image quality and rendering latency. Shi et al. [70] proposed a scene-aware foveated
Nerfs method. It constructed a multi-ellipsoid neural representation to enhance the representation of the neural
irradiance field in salient regions of complex VR scenes. It also introduced a uniform sampling-based foveated
Nerf framework to improve the foveated image synthesis performance with one-pass color inference. Compared
with FoV-NeRF, the synthesis quality and rendering performance are improved. Wang et al. [71] proposed a new
NeRF representation based on visual perception, which for the first time, integrates the visual sensitivity and
contrast sensitivity models of the human visual system into a NeRF rendering framework. They also adopt a
visual-perceptual sampling strategy to allocate computational resources according to the sensitivity of the human
eye to the HVS. It achieves better image quality and a higher frame rate than FoV-NeRF.

5.2.3  Dynamic scenes rendering

The original NeRF [30] approach was confined to static scenes, rendering it inapplicable in dynamic environments
directly. Numerous studies have sought to extend 3D NeRF across the temporal dimension. D-NeRF [72] represents
the pioneering work in end-to-end dynamic NeRF, segmenting learning into two modules: the first model discerns
spatial mappings between each point in a scene at time ¢ and a canonical scene configuration; the second module
regresses the scene radiance emitted by each direction and volume density for a given tuple: at a 3D point (x,y, 2)
and viewing direction (6, ¢), it returns the emitted color ¢ and volume density o, aligning with traditional NeRF’s
methodology.

Li et al. [73] proposed a methodology for synthesizing new viewpoints and temporal compositions in dynamic
scenes, requiring only a monocular video with a known camera pose as input. This introduced a neural scene flow
field that models dynamic scenes as continuous functions of space and time, outputting not only reflectance and
density but also the motion of the 3D scene. Park et al. [74] first introduced NeRFies, which similarly utilizes a
deformation field to model non-rigid deformations within the scene. Unlike D-NeRF, this method does not utilize
temporal sequences as input for predicting deformations. Instead, it employs a latent code to encode the appearance
of objects, relying on a latent deformation code to predict object deformations. Building on NeRFies, Park et al.
subsequently proposed HyperNeRF [75], which extends canonical space into higher dimensions to address complex
topological transformations, adding an additional slicing MLP that describes how to return to the 3D representation
using the ambient space coordinates. Xian et al. [76] developed a method to learn spatiotemporal neural irradiance
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fields from a single video, applying depth supervision to constrain the time-varying geometry of dynamic scenes
at any moment, thereby resolving ambiguities associated with appearance changes in motion-filled scenes. Zhang
et al. [77] proposed a differentiable point-based rendering algorithm that achieves efficient new viewpoint synthesis
through a differentiable splat-based rasterizer. Starting from a uniformly sampled random point cloud, it learns
each point’s position and view-dependent appearance. For dynamic scenes, it trains a model for each frame image
and uses the model learned in a given frame to initialize the next, thereby reducing the training time required to
converge.

Recently, more studies on dynamic NeRF have focused on innovative methods for 4D dynamic scene modeling.
Wang et al. [78] introduced Fourier PlenOctrees, achieving real-time rendering for general dynamic scenes. This
method models time-varying density and light field functions in dynamic scenes using Fourier coefficients, employing
an octree structure to accelerate NeRF inference. NeRFPlayer [79] is a feature-streaming scheme based on a hybrid
representation that effectively models dynamic scenes. This method decomposes the 4D spacetime according to
temporal characteristics, associating points within the 4D space with probabilities belonging to static, deforming,
and new regions, each represented and normalized by an independent neural field. Tensor4D [80] presents an efficient
and effective method for dynamic scene modeling, relying on an efficacious 4D tensor decomposition approach
to represent dynamic scenes directly as 4D spacetime tensors. It projects the 4D tensor onto three time-aware
volumes, then onto nine compact feature planes, stratifying the decomposition of the 4D tensor to capture spatial
information that changes over time compactly and efficiently. HexPlane [81] uses six learnable feature planes to
explicitly represent 3D dynamic scenes, overcoming the memory challenges of modeling all 3D points in space and
time. By projecting points onto each feature plane and then aggregating the six resulting feature vectors, HexPlane
computes the spatiotemporal feature vector of points, predicting the color of the point through a minimal MLP,
thus achieving new viewpoint synthesis results in dynamic scenes. Fridovich-Keil et al. [82] extended HexPlane to
arbitrary dimensions, introducing K-Planes, a white-box model capable of modeling human-perceived radiation fields
across dimensions using d-2 planes to represent scenes in d dimensions, such as static scenes (d = 3) and dynamic
scenes (d = 4). This method efficiently models static and dynamic scenes and those with variable appearances,
with reconstruction quality competitive with or superior to MLP-based black-box models.

5.2.4  NeRF controllable editing

Although neural radiance fields provide a plausible representation of scenes, they do not inherently support editable
transformations of shape and appearance. This limitation arises because NeRF models a scene as a radiance-dense
field, meaning any alterations to the scene necessitate extensive computational resources and time to recalculate
the new radiance field. Enabling controlled modifications to scene representations represents a critical development
vector for NeRF, with primary emphases on shape, appearance, and scene composition.

Liu et al. [83] proposed EditNeRF, which allows users to input image conditions, enabling localized edits to an
object’s appearance, including color and shape. The model comprises a category-specific shared shape network
and an instance-specific shape network. The editing process in NeRF is achieved through joint optimization that
balances the accuracy and the losses of latent encodings. These encodings permit the NeRF model to control each
image’s lighting and shading variations, as well as minor content changes in the scene. CodeNeRF [84] learns to
decouple the connections between shape and texture by studying separate embeddings. It segregates geometry,
appearance, and viewpoint through a fully connected network that maps 3D locations and ray directions to density
and RGB values. Objects novel viewpoint images can be reconstructed from a single image, with subsequent edits
to shape and texture possible by rendering new perspectives or altering latent codes. However, these shape and
appearance latent encodings are typically 2D. GIRAFFE [85] also employs generated latent encodings, predicated
on the critical assumption that integrating synthesized 3D scene representations into generative models can render
image synthesis more controllable. GIRAFFE separates the scene into background and foreground via MLPs,
enabling the isolation of one or more objects from the background, and their individual shapes and appearances,
allowing translational and rotational movements within the scene, as well as alterations to camera pose.

Another approach to achieving controllable editing of NeRF is to introduce other models and multi-level feature
learning strategies, thereby enabling precise control over individual objects within the scene. Yang et al. [86]
introduced a composite model that enables editing multiple objects within a scene. This method adopts a voxel-
based approach, learning separate latent representations for each object in the scene. Specifically, the model
includes two branches: an object branch that encodes each individual object and a scene branch that encodes
the scene’s geometry and appearance. The object branch conditions on a learnable object activation code, thus
facilitating object-level editing capabilities. DFF [87] leverages existing supervised and self-supervised 2D image
feature extractors (such as CLIP-LSeg or DINO) to transfer knowledge into a 3D feature field optimized concurrently
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with the radiance field, allowing NeRF to be decomposed into any semantic units. This enables multifunctional
scene editing through text and image without the need to retrain the radiance field. CLIP-NeRF [88] integrates the
training model with NeRF image synthesis, supporting text and image-driven NeRF editing. This method infers
shape and appearance codes from real images, introducing shape encoding and appearance encoding to modify
the 3D model’s volume and color. Thus, NeRF can extract latent space shifts induced by shape and appearance
mapping networks from user-inputted text or images.

Some approaches also decompose the scene into more explicit appearance and light models to achieve more
detailed and precise control of lights. Chen et al. [89] extracted shading parameters to reconstruct and relight
humans from videos. The space-time varying geometry and reflectance are decomposed from the human body as
a set of neural fields. Rudnev et al. [90] first introduced NeRF-OSR to relight outdoor scenes based on NeRFs,
allowing for the simultaneous editing of illumination and camera.

5.2.5 Variants of NeRF

The original NeRF renders each pixel using only a single ray with a relatively low sampling frequency. This
insufficient sampling frequency can lead to the aliasing of high-frequency information in the scene, resulting in
blurred and jagged renderings. Additionally, the original NeRF requires dense multi-view images and corresponding
camera poses for retraining each new scene, which limits its direct applicability to unseen scenes. NeRF has
significant room for improvement in modeling accuracy and in reconstructing from sparse views; therefore, numerous
variants of NeRF have been developed.

To enhance modeling accuracy, some researchers have modified NeRF’s sampling methods. Barron et al. [91]
proposed Mip-NeRF, which transforms the original sampling rays into conical frustums and converts the point
samples along the rays into samples within these frustums. This approach effectively performs a filtering operation
on the feature values of the sampled points within the frustum before rendering. For computational efficiency, Mip-
NeRF approximates the conical frustum using a 3D Gaussian distribution to represent the integral region of the
radiance field. Additionally, Mip-NeRF introduces a weighted averaging of positional encodings to obtain integrated
positional encoding, allowing the neural network to directly infer the average volumetric density and color of the
sampled points within the frustum. By effectively rendering conical frustums instead of rays, Mip-NeRF reduces
aliasing artifacts and significantly enhances NeRF’s capability to capture fine details. They further proposed Mip-
NeRF 360 [92], which reduces mean-squared error by 57% compared to Mip-NeRF and is able to produce realistic
synthesized views and detailed depth maps for highly intricate, unbounded real-world scenes.

Regarding sparse-view reconstruction, some studies have introduced a convolutional neural network (CNN) for
feature extraction and fusion, significantly reducing the number of training samples required and improving NeRFs
generalization ability. PixelNeRF [93] employs a CNN encoder to extract image features, endowing 3D points with
generalization capabilities and supporting minimal input. After learning the scene prior, NeRF inference under the
condition of one or a few input images proceeds by projecting the generated camera rays onto the image plane,
extracting image features for each query point. These features, along with the observation direction and query
points, are then fed into the NeRF network to generate density and color. PixelNeRF learns a scene prior from
multiple images, enabling new view synthesis from a sparse set of views, potentially as few as a single image. Wang
et al. [94] proposed an image-based rendering method called IBRNet, which learns a general view interpolation
function that can generalize to new scenes. It relies on selecting multiple views from the training set that are most
similar to the target viewpoint direction, using CNNs to extract features from these images. This algorithm achieves
comparable reconstruction quality for new scenes with results obtained from short-term fine-tuning, similar to NeRF
trained for long durations. MVSNeRF [95] also utilizes pre-trained CNNs to extract 2D image features, which are
used to construct a 3D cost volume with geometric perception via the plane sweep method. Subsequently, a 3D
CNN is used to extract a 3D neural encoding volume. Finally, the MLP decodes volumetric density and radiance
for any continuous position within the encoding volume using trilinear interpolation of neural features combined
with physics-based volumetric rendering to construct the NeRF. This method enables high-quality radiance field
reconstruction from only three sparse input views and achieves realistic view synthesis from the reconstruction
results. For new scenes, MVSNeRF can achieve reconstruction quality similar to NeRF trained for 10 h with just
15 min of fine-tuning.

5.3 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) has 3 main steps. Similar to rasterization, given a specified camera pose, frustum
culling determines which 3D Gaussians are outside the camera’s frustum. 3D Gaussians outside the given view are
not involved in subsequent calculations, thus saving computational resources. Then, similar to the projection of
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the mesh in the rasterization process, 3D Gaussians (ellipsoids) are projected into the 2D image space (ellipses)
for rendering. At last, for each pixel, all overlapping Gaussians can be obtained based on the distance, and alpha
blending is adopted to compute the final color of this pixel.

Rendering equations. Given the viewing transformation W, the 3D Gaussians are first projected to 2D, the

projected 2D covariance matrix Y is computed with

Z, =JW> W, (8)

where J is the Jacobian of the affine approximation of the projective transformation. This projection process is
proven to be accurate [96]. Then, the overlap between projected 2D Gaussians and the pixels is computed based

on the projected 2D center and Y . For the color ¢ of each pixel, the overlapped 2D Gaussians are sorted based on
view space depth with a single fast Radix sort, and alpha blending is adopted using

i—1

c= ZciaiH(l —a;), (9)
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where ¢; is the learned color, N is the sorted list of overlapping Gaussians, and the final opacity a; is the multipli-
cation result of the learned opacity a; based on

’ 1 ’ s T r—1 ’ ’
Q; = Q- €Xp (—5(30 — ;) Zi (x —Mi)>v (10)

where 2" and u; are pixel coordinate and center of the projected 2D Gaussian in the projected space.

5.3.1 Dynamic scene rendering

3DGS cannot be used to render dynamic scenes directly. It would be beneficial to enhance the capabilities of 3DGS
by extending it from representing static scenes to dynamic scenes. One way to extend 3DGS to dynamic scenes is
to learn a set of Gaussian representations for each image frame, but this is obviously costly. Learning deformations
is more convenient than modeling the scene at each time step.

Some research focuses on constructing the deformation field for all Gaussians. Wu et al. [97] proposed a novel
framework for real-time 4D dynamic scene rendering. Their framework first employs a spatial-temporal encoder that
utilizes multiresolution K-Planes and MLPs for efficient feature extraction. Then, a compact multi-head MLP is
used as a decoder to predict positional deformation, rotation, and scaling, respectively. This method of learning the
Gaussian deformation field results in efficient memory usage and fast convergence. Duisterhof et al. [98] introduced
MD-Splatting to perform 3D point tracking while synthesizing dynamic new views. MD-Splatting employs a feature
encoding technique and learns Gaussian deformations in metric space rather than non-metric normed space. In
addition, opacity and scale parameters are not inferred to prevent learning opacity, and scale parameters over
time render the Gaussian insubordinate to the exact motion of the point. Rigidity and isometric losses, as well
as momentum conservation losses, are incorporated into the trajectory regularization. Yang et al. [99] proposed
4DGS to model space and time as a whole to address the problem of representing and rendering dynamic scenes in
general. 4DGS extends the scaling and rotation matrices derived from the decomposition of the original covariance
matrices to 4D Euclidean space. A generalized 4D Gaussian representation is derived to achieve a reasonable fit to
4D manifolds while capturing the underlying dynamics of the scene. In addition, 4DGS is able to exploit spherical
nonlinear harmonics so that the appearance changes with the viewing angle and the color evolves over time.

Another work is to construct the deformation field by pairing a small number of Gaussians and controlling other
Gaussians through these Gaussians. Kratimenos et al. [100] presented DynMF for real-time synthesis of dynamic
views. DynMF decomposes complex motions in a given scene into several base trajectories, from which motions are
derived for each point, and the trajectories are then predicted by MLP. A shared neural basis for all points produces
physically plausible and frame-consistent sequences. To prevent the selection of unnecessary bases, DynMF employs
a stronger loss term, forcing each Gaussian to select only a few trajectories.

Physical simulation is also used to control 3D Gaussian deformation. PhysGaussian was introduced by Xie et
al. [101] to seamlessly integrate physics simulation into 3DGS to generate novel dynamics and views. PhysGaussian
first reconstructs the static scene through 3DGS and regularizes the overly lean Gaussian with optional anisotropy
loss. Continuum medium mechanics is modeled through a continuous deformation map over time. The Gaussian
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kernel is treated as a discrete particle cloud and deforms simultaneously with the continuum. In order to force the
deformed kernels under the deformation map to be Gaussian, PhysGaussian utilizes a first-order approximation to
describe the particles undergoing local affine transformations. Additionally, there is an option to fill the internal
regions of the object via a 3D opacity field to help render exposed internal particles.

5.3.2 3D Gaussian editing

Scene editing is sometimes required in VR applications, and it is not easy to edit the scene directly with 3D
Gaussian. Some methods enable editing by segmenting 3D Gaussians. Zhou et al. [102] proposed Feature 3DGS,
which integrated 3DGS with feature field distillation from 2D foundation models. Unlike traditional 3DGS, feature
3DGS expands Gaussians with semantic features and constructs a 3D feature field. It first trained the Gaussians with
semantic features under the supervision of 2D segmentation models. Then, a lightweight convolutional decoder will
be used for upsampling to get high-dimensional features. Feature 3DGS achieved faster training and rendering speeds
while enabling high-quality feature field distillation, supporting Downstream tasks like semantic segmentation and
language-guided editing. Ye et al. [103] proposed Gaussian Grouping, which extended 3DGS to jointly reconstruct
and segment in 3D scenes. Gaussian Grouping augments each Gaussian with a compact identity encoding, allowing
the Gaussians to be grouped according to their object instance or stuff membership in the 3D scene. Instead of
resorting to 3D labels, Gaussian Grouping supervises the identity encodings during the differentiable rendering
by leveraging the 2D mask predictions by the segment anything model, along with the introduced 3D spatial
consistency regularization. Besides, a local Gaussian editing scheme was proposed to achieve object removal,
inpainting, colorization, style transfer, and scene recomposition. Cen et al. [104] proposed SAGA, which can
efficiently segment the corresponding 3D target represented by 3D Gaussians with a 2D visual prompt. SAGA
attached a scalegated affinity feature to each 3D Gaussian to endow it with a new property towards multigranularity
segmentation. A scale-aware contrastive training strategy is applied for the scale-gated affinity feature learning.
It first distills the segmentation capability of the segment anything model (SAM) from 2D masks into the affinity
features. Then, it employs a soft scale gate mechanism to deal with multi-granularity ambiguity in 3D segmentation
by adjusting the magnitude of each feature channel according to a specified 3D physical scale. SAGA can achieve
real-time multi-granularity promptable segmentation and scene editing.

Another approach is to directly transform 3D Gaussian to achieve editing. Liu et al. [105] proposed StyleGaussian,
which can instantly transfer any image’s style to a 3D scene represented with 3D Gaussian. StyleGaussian has three
steps: embedding, transfer, and decoding. Initially, 2D VGG scene features are embedded into reconstructed
3D Gaussians. Next, the embedded features are transformed according to a reference style image. Finally, the
transformed features are decoded into the stylized RGB. A feature rendering strategy is first applied to cut the
memory consumption significantly and enables 3DGS to render the high-dimensional memory-intensive features. It
renders low-dimensional features and maps them into high-dimensional features while embedding VGG features.
Then, a K-nearest-neighbor-based 3D CNN is applied to eliminate the 2D CNN operations that compromise strict
multi-view consistency.

5.3.3  Variants of 8D Gaussian Splatting

Although 3DGS has achieved good results in terms of rendering quality, it still has room for improvement in terms
of modeling accuracy, anti-aliasing, and specular object modeling. There are various variants of 3DGS. To improve
geometric modeling accuracy, some researchers modified the Gaussian representation. Huang et al. [106] proposed
2DGS to model and reconstruct geometrically accurate radiance fields. Different from 3DGS, 2DGS collapses
the 3D volume into a set of 2D-oriented planar Gaussian disks, which provides view-consistent geometry while
modeling surfaces intrinsically. Besides, 2DGS adapts a perspective-accurate 2D splatting process utilizing ray-
splat intersection and rasterization to accurately recover thin surfaces. The significant advantage of 2D Gaussian
over its 3D counterpart lies in the accurate geometry representation during rendering.

Regarding anti-aliasing, some research focuses on the rendering quality at different distances, focal, and scales.
Influenced by Mip-NeRF [91], Yu et al. [107] introduced 3D smoothing and 2D Mip filters to solve the blurring
problem in 3D Gaussian optimization process. The three-dimensional filter, which originates from the Nyquist-
Shannon sampling theorem, is a Gaussian low-pass filter that removes high-frequency artifacts by limiting the
frequency of the three-dimensional representation to less than half of the maximum sampling rate that comes from
the multiview image. On the other hand, the 2D filter is designed to mitigate aliasing problems when rendering a
reconstructed scene at a lower sampling rate. It replaces the screen space expansion filter of 3DGS and replicates
the behavior of the box filter during physical imaging. This principled approach is better suited for non-distributed
scenes with unknown camera poses and zoom coefficients. Yan et al. [108] proposed a multiscale approach to
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Table 4 Summary of studies related to NeRF rendering and 3D Gaussian Splatting.

Non-real-time (FPS<20) Weakly-real-time (FPS<90) Real-time (FPS>90)
Basic (PSNR<25) [74-76,79, 83,84, 86, 94] 69, 70] -
Detail (PSNR<30) [30,72,73, 85,87, 88,92, 93, 95, 105] [62-65,97,101,107] [96,99,103,104, 108, 110]
Visually-lossless (PSNR>30) [80-82,91,102,111] [71,77,98,109] (78,100, 106]

mitigate the aliasing effect in 3DGS. They argue that a large number of Gaussians mainly cause the aliasing effect
to fill in regions with complex 3D details. Therefore, they represent the scene with different levels of detail. Within
each level, fine-grained Gaussians smaller than a certain size threshold in each voxel are aggregated into larger
Gaussians and then inserted into subsequent coarser levels. These multi-scale Gaussians effectively encode high
and low-frequency signals and are trained with the original image and its downsampled counterpart. During the
rendering process, the appropriate scaled Gaussians are selected accordingly, resulting in improved quality and
rendering speed.

Some researchers worked on improving the rendering quality for the scene with specular objects. A photorealistic
rendering framework was proposed by Gao et al. [109]. It utilizes a set of relightable 3D Gaussian points to represent
the scene. The surface normals are regularized by the consistency between the rendered normals and the pseudo-
normals, where the pseudo-normals are computed from the rendered depth map. Geometric cues are introduced
by integrating multi-view stereo cues. This approach uses a simplified BRDF model with additional rendering
attributes assigned to each Gaussian. The incident light is divided into local and global components, which are
represented by the spherical harmonics of each Gaussian and the shared global spherical harmonics multiplied by a
visibility term, respectively. To improve the rendering efficiency and quality, the physically based rendering colors
are computed at the Gaussian level with additional regularization terms attached during the optimization process.
Jiang et al. [110] proposed GaussianShader to further enhance the realism of scenes with specular features and
reflective surfaces. GaussianShader explicitly takes into account light-surface interactions and employs simplified
approximate rendering equations for high-quality rendering at a much lower time cost. To accurately predict the
normals of a discrete 3D Gaussian, the method uses the shortest axis of the Gaussian ellipsoid as the approximate
normal and introduces two additional trainable normal residuals for regularization, one for the outward axis and
the other for the inward axis. In addition, the consistency of the normal geometry is achieved by minimizing the
difference between the gradient normals derived from the rendered depth map and the normal maps rendered using
the previously predicted normals. Ma et al. [111] proposed SpecNeRF to improve 3DGS modeling and rendering
results for specular. SpecNeRF aims to enhance the capabilities of NeRF by using 3D Gaussian as a novel orientation
encoding. It utilizes a set of learnable Gaussians as the basis for embedding a 5D ray space containing the ray
origin and ray direction. As a result, the encoding function can be varied spatially, with the spatial features varying
in a manner consistent with the behavior of the specular reflection component. This results in better simulation
of reflections and improved realism. SpecNeRF also introduces an initialization phase that involves the refinement
of Gaussian parameters to facilitate the joint optimization of Gaussian and NeRF. In addition, monocular normals
are utilized in the early training phase to provide a supervised signal for the predicted normals and to mitigate
shape-radiance ambiguities.

Table 4 compares NeRF and 3D Gaussian Splatting methods in scene reconstruction quality (categorized as
basic/detailed /visually-lossless) and rendering speed (non-real-time/weakly-real-time/real-time). Color-coded re-
sults show NeRF methods [30, 62-95] predominantly achieve basic reconstruction with limited real-time capability,
whereas Gaussian Splatting [96-111] demonstrates superior performance: 100% achieve detailed or visually-lossless
quality (vs. NeRF’s 66.67%) and 81.25% attain real-time rendering (vs. NeRF’s 23.33%). This efficiency gap is
especially noticeable in scenarios with limited computational resources, where Gaussian methods have higher frame
rates.

5.4 Material representation and operations

High-fidelity materials are essential for rendering realistic virtual scenes, and bidirectional reflectance distribution
functions (BRDFs) are the most commonly used formulation for materials in realistic rendering. A BRDF is defined
as a reflectance function of illumination and viewing directions, which is naturally 4-dimension. Sometimes artists
create textures by providing various BRDF parameters at different texture coordinates, and those cooperating
texture maps make up a spatially-varying BRDF (SVBRDF), which is consequently 6-dimensional. For some
real-world texture measurements, there may be no explicit texture parameter maps to define such an SVBRDF.
Therefore, a more generalized representation called bidirectional texture function (BTF) is also widely used to
define optical reflectance values as a 6D function of spatial and angular coordinates.
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However, the high dimensionality of these material spaces makes it challenging to represent and manipulate
materials efficiently. Approximate analytical models like SVBRDFs can be fast and user-friendly, but they often
suffer from lower accuracy and compatibility. Once the analytical model is chosen, it is difficult to include new
complex effects, for example, parallax, subsurface scattering, and anisotropy. In contrast, neural networks can rep-
resent complex materials inclusively, while the manipulation and semantic explanation of the neural representations
remain challenging.

5.4.1 Neural BRDF representation

Real-world material measurements are one of the most important sources for realistic appearances. To efficiently
represent and evaluate these materials in both performance and storage, some studies are carried out to use neural
networks to compress measured BRDFs. Hu et al. [112] used a convolutional autoencoder to compress BRDF
slices into latent vectors and reconstruct them. Zheng et al. [113] used a neural process instead, which is more
compact and efficient. Sztrajman et al. [114] used small MLPs to represent each BRDF individually and further
compressed these network weights using an autoencoder. Some other work tries to introduce advanced machine
learning technologies to achieve a better sampling space, where one can utilize sparser samples or efficiently handle
new materials beyond the training group. Recently, Fischer et al. [115] used meta-learning to generalize over different
kinds of appearances, Gokbudak et al. [116] also generalized the BRDF representations by a hypernetwork, and can
estimate the measured BRDFs from a sparse set of input samples.

Complex materials, such as layered materials and micro geometries, are also challenging for neural networks to
deal with. On the one hand, such a dataset is scarce and the diversity of material samples is limited. On the other
hand, the neural networks also tend to fit smooth signals rather than high-frequency details, which are significant
for the realism of such materials. Kuznetsov et al. [117] focused on complex micro geometries, using a generative
model to evaluate specular material with high efficiency. Another group of work focuses on layered materials, using
neural networks to fit the precomputed reflectance and achieve efficient and noise-free evaluation. Fan et al. [118]
trained a large optimization-based universal network to represent BRDF's, and encode high-quality specularities.
Guo et al. [119] leveraged meta-learning for modeling and rendering layered materials, using two networks to encode
material appearances and map between representation weights and physical parameters. Recently, TG et al. [120]
proposed the use of neural networks to compress more complex appearances like bidirectional scattering surface
reflectance distribution functions into implicit representations.

5.4.2  Neural SVBRDF/BTF representation

Textures are key for rendering realistic virtual environments, and there are also both analytical approximation and
generalized appearance representations. Since SVBRDFs are naturally efficient in evaluating and rendering, the
neural representation of SVBRDFs is more focused on and used for the recovery and derivation of SVBRDF maps
from captures [121-123], and sometimes the shapes of objects are also involved [124-126]. These studies usually
used CNNs to encode the spatial correlation of the tables and introduced prior knowledge in image space to help
with the high dimensionality of the texture space.

However, for measured BTF's, there are no explicit parameter maps to apply any priors. Therefore, the research
on neural BTF compression introduces different ways of modeling and utilizing the spatial relationship among the
BTF texels. The fundamental idea to represent a BTF with neural networks is to treat each texel of the texture as
a single BRDF, which is also called an apparent BRDF. Rainer et al. [127] trained individual encoders for each BTF
and used latent maps to store compressed vectors, and Figure 9 illustrates its network structure. This representation
is further improved by Rainer et al. [128] to a unified model with higher quality and more compact compression.
Kuznetsov et al. [129] used an overfitted neural network to compress a BTF into pyramid structures and can handle
parallax effects. This work is later further extended by Kuznetsov et al. [130] for curved surfaces. With a spatial-
angular decomposition, Fan et al. [131] proposed a neural biplane model to represent BTFs with a universal network,
encoding both the spatial and directional information from the texture. Recently, Zeltner et al. [132] presented a
complete system to embed SVBRDF/BTF textures and rendered them with real-time performance, thanks to the
prior transformations and sampling algorithm.

5.4.3 Neural material manipulation and operation

The manipulation and operation of the neural representations in the latent space are widely studied in previous
work, and by different means, some researchers managed to achieve semantic editing and manifold interpolation of
these materials. One classic approach is to find the mapping between physically based parameters and the latent
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Figure 9 (Color online) The structure of the material representation network in the work of Rainer et al. [127]. Specifically, these studies
sample per-pixel apparent BRDFs from the spatially-varying material, encoding them into a latent space, and will be further decoded by a
decoder with query directions as inputs. Based on this kind of fundamental pipeline, a series of designs for the encoders and decoders is
proposed to achieve different goals and reflect different insights.
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Figure 10 (Color online) Fan et al. [118] introduced a generalized network to achieve high-efficiency layering operation of materials by mapping
the latent vectors of layered material to the encodings of their single-layer components and physical parameters. The comparison between the
predicted resulting layered BRDF's and the ground truth is shown, indicating the network can also deal with multiple layering operations.

vectors. For example, Hu et al. [112] used an MLP to map physical parameters into the latent space and, therefore,
can perturb the material by feeding different parameters. Another way to achieve latent space manipulation is
to find mappings within the latent space. For example, Zheng et al. [113] trained several individual classifiers
to find some semantically meaningful directions in the latent space and then shifted the latent vectors along these
directions. The interpolation of the weights of neural networks for materials is also studied by Sztrajman et al. [114].
Apart from semantic editing and interpolation, some researchers also focus on the advanced operations of materials
in the latent space. Fan et al. [118] achieved the layering operation in the latent space using a pretrained layering
network by feeding the network with the latent vectors of component materials and some physical parameters as
presented in Figure 10. The layering operation is also studied by Guo et al. [119], who use a meta-learning framework
to directly predict the resulting materials. Sztrajman et al. [114] computed the CDF for a proxy BRDF instead and
trained a network to predict the proxy BRDF parameters. Fan et al. [118] also supported importance sampling for
neural materials but directly computed the sampling results from the input latent vector by a sampling network.

5.5 Light transport computation

While the materials in the previous section show objects’ ‘local’ appearance, the light transport across the entire
scene is in charge of the ‘global’ appearance, or so-called global illumination (GI). GI is formulated by the rendering
equation (RE) [133] for surface objects and by the radiative transfer equation (RTE) [134] for objects made of
volume. As both RE and RTE do not have any analytical solutions, existing approaches rely on Monte Carlo-based
techniques to solve them. At the core of these approaches is noise reduction by better path sampling, caching, or
control variates. Recently, neural networks have been introduced into these techniques. As path sampling is a typical
and active research direction, we discuss the studies related to neural path guiding (or sampling) first, and then
we show the other surface rendering techniques with neural works. Finally, we review neural-based participating
media rendering approaches.

5.5.1 Neural path guiding

The key to path tracing is sampling a path to connect the camera and the light sources. The typical solutions
for sampling a path are BRDF importance sampling, light importance sampling, or their combination, or multiple
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importance sampling (MIS). While MIS improves the robustness of direct lighting in terms of varying frequency
materials or light sources, it fails for indirect lighting, particularly for complex effects, including caustics and glossy
indirect illumination. At this point, path guiding is introduced into path sampling, which also considers the global
lighting distribution in the scene. The basic idea of path guiding is to store the radiance distribution of each point
in the scene and use this distribution to guide the path sampling direction. However, the radiance distribution
has five dimensions (three in the spatial domain and two in the angular domain), raising difficulties in storing.
Neural networks have shown their powerful capability for representing the spatial-varying distribution of scattered
radiance. We classify the related approaches into online learning (or scene-dependent) and offline learning (or
scene-independent).

Online learning. One group of path-guiding approaches is online learning, where the radiance distribution is
learned in a specific scenario. Miiller et al. [135] used an online-learned neural network for an important sample.
Despite the high accuracy of the learned distribution, expensive infer time is required for sampling. Zheng et
al. [136] introduced Real VNP to warp the primary sample space to obtain desired densities and sample these desired
densities rather than uniform primary space sampling. Recently, online learning-based path guiding approaches [137,
138] have also been proposed, using a single MLP to learn the continuous distribution of the scattered radiance
product, represented as spherical Gaussians or normalized anisotropic spherical Gaussian mixtures, leading to lower
sampling variance. Besides the above studies, the neural network has also been introduced for complex luminaries
sampling [139] by learning a coarse, low-resolution distribution with limited accuracy. Wang et al. [140] introduced
reinforcement learning in many-light sampling to reduce variance.

Offline learning. In contrast to the online learning category, the offline learning-based approaches learn the
distributions with large datasets and can be applied to general scenes. Bako et al. [141] proposed to train a
generative adversarial network to reconstruct the desired sampling distribution from the local neighborhood of
samples. Similarly, Huo et al. [142] proposed reconstructing the first-bounce incident radiance field with a CNN-
based network and sample with the deep reinforcement learning-based network. Unfortunately, these methods are
designed for first-bounce sampling only, limiting their supporting GI effects. Later, Zhu et al. [143] introduced
photons into path guiding to enable arbitrary bounce sampling. After that, Zhu et al. [144] further improved it by
combining photon and path for robustness and including a quad-tree representation of incident radiance distribution
using nearest photons to reduce memory consumption.

5.5.2  Other neural surface rendering techniques

Besides leveraging neural networks for path sampling, it can also benefit other rendering techniques (e.g., radiance
caching and control variates), which aim at accelerating rendering or rendering approaches (e.g., photon mapping).

Ren et al. [145] proposed the first neural network for GI by treating the GI as a radiance regression function, which
maps the surface attributes to indirect illumination values. Their method is able to achieve real-time rendering
at the cost of expensive precomputation and training. Recently, Gao et al. [146] extended the above method to
dynamic area light, together with other techniques, like positional encoding for high-frequency effects, leading to
a higher quality. In contrast to offline training, Miiller et al. [147] proposed online training for radiance caching
by learning the radiance distribution with a single small neural network and leveraging it for real-time rendering,
achieving obvious variance reduction. Small neural work and high-performance implementation lead to efficient
network inference. Similarly, neural networks have also been leveraged to learn the norm of the residual of the
rendering equation by Hadadan et al. [148]. As it is similar to radiosity-based rendering methods, it is also called
neural radiosity.

Control variates have been used for noise reduction in Monte Carlo integration. Its key idea is that the integral of
an original function is expressed as the known integral of a simpler function, together with the Monte Carlo estimate
of the difference to the original integrand. When the difference function is closer to a constant, the resulting variance
will be low. Miiller et al. [149] introduced neural networks into control variates by learning the control variate, the
integral of control variates, and the probability density function of the difference function, leading to obvious noise
reduction.

Neural networks have also been applied to other rendering methods, like photon mapping. Usually, photon
mapping is used for rendering caustic effects, which require a large amount of photons to achieve the sharp features
of caustics. Zhu et al. [150] proposed a deep neural network to predict a kernel function to aggregate photon
contributions, leading to obvious photon count requirements to achieve a similar quality.
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5.5.3 Neural participating media rendering

Different from surfaces, rendering participating media becomes even more challenging due to their complex light
effects. For example, light might bounce several times before leaving the medium, leading to a long path. The light
transport in a participating medium is formulated by the radiative transfer equation. Solving RTE with Monte
Carlo sampling leads to noisy renderings due to the high variance of the sampled long paths. To address this issue,
neural networks have also been introduced into participating medium rendering to reduce variance.

Starting from Kallweit et al. [151], the neural network is used to predict the radiance of the participating medium
called the radiance prediction neural network (RPNN). Although they encode the shape with stencils, their method
cannot handle complex shapes. Upon RPNN, Hu et al. [152] further introduced multiple features for RPNN and
decoupled the high-frequency and low-frequency effects, leading to a lighter network, achieving a real-time frame
rate. To avoid modeling the shapes explicitly, Leonard et al. [153] relied on sphere tracing and exploited a sequence
of conditional variational auto-encoders to model the contributions of all possible paths between two points inside
a spherical region. Different from previous studies, Ge et al. [154] applied the neural network to represent multiple
scattering of arbitrary homogeneous infinite participating medium directly, without considering the shapes and
achieving an interactive frame rate. Although it works for thick medium, it exhibits noticeable differences for thin
medium. Unlike the models that train neural networks for the prediction of radiance, Vicini et al. [155] proposed
a neural network to sample the exit point to fit the path-tracing framework, where the shapes are encoded by the
first-order approximation.

Although hair differs from the participating medium, rendering hair also has the same problem: the long path
due to multiple scattering among fibers. KT et al. [156] accelerated hair rendering by learning a small MLP to
represent the multiple scattering or high-order scattering online, leading to obviously reduced variance.

5.6 Rendering post-process

After obtaining the advanced material modeling and computing the light transport faithfully, the Monte-Carlo
ray-tracing rendering engine is used to render photo-realistic images. However, obtaining noise-free high-resolution
images via this method is time-consuming, so rendering post-process techniques are necessary to reduce the ren-
dering cost and improve the rendering quality, mainly including denoising, super-resolution, and frame interpola-
tion/extrapolation.

5.6.1 Denoising for Monte Carlo rendering

Monte Carlo (MC) ray tracing comes with significant variance at low sample counts, and denoising is needed as a
substantial post-process. These methods are divided into offline and real-time algorithms based on execution time.
Offline denoising. The early studies got inspiration from traditional filter-based methods (e.g., cross bilateral
and cross non-local means filters), and they focused on predicting an optimal filter kernel for denoising. Kalantari et
al. [157] introduced the neural network for MC denoising. Their method predicts a filter via a multilayer perceptron
neural network and conducts filtering to produce denoised images. Bako et al. [158] introduced a CNN model to
predict local weighting kernels to filter pixels from their neighbors. Vogels et al. [159] further improved denoising by
several task-specific modules and proposed an asymmetric loss to preserve details. Some advanced methods utilize
the neural network to predict noise-free images directly and focus on task-specific architecture or learning strategy
design. Chaitanya et al. [160] proposed a recurrent neural network (RNN) model considering temporal coherence
for interactive renders, which almost runs at real-time rates. Xu et al. [161] introduced adversarial learning into
MC denoising for the first time and designed a novel conditioned auxiliary feature modulation method that better
utilizes feature information at the pixel level. Yu et al. [162] introduced the self-attention mechanism into MC image
denoising, which effectively involves the auxiliary features in the denoising process. Back et al. [163] introduced
self-supervised learning into MC denoising and proposed a post-processing network that improves the performance
of supervised learning denoisers. They designed a self-supervised loss that guides the post-correction network to
optimize its parameters without relying on the reference. The above methods take noisy rendered images as the
input, and the sample-based methods consider the information from a single sample. Gharbi et al. [164] presented
the first CNN model that can directly learn to denoise from samples. Since samples include more information, the
method produces higher quality even with only a few samples. Offline denoising techniques can present exquisite
final images. Although it is still difficult to run in real-time and cannot be directly applied in VR applications,
the denoising ideas of some algorithms are still very worthwhile. Subsequent research can continue to optimize
computational efficiency by considering dynamic and temporal information and designing intelligent filters.
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Real-time denoising. Another group of methods can run at real-time rates and thus support online applications.
Fu et al. [165] facilitated the U-shape kernel-prediction network with a sparse auxiliary feature encoder, which focuses
solely on changed regions and reuses the history features in other regions, reducing 50%—70% consumption without
apparent performance drops. Isik et al. [166] designed an MC denoiser that runs at interactive rates, consisting
of a filtering algorithm that uses pairwise affinity to learn iteratively-applied 2D dilated kernels and a temporal
aggregation mechanism that uses the same pairwise affinity to improve the temporal stability of MC denoising
significantly. Balint et al. [167] proposed a pyramidal filter with learnable partitioning and upsampling stages,
leading to considerable improvements. Hofmann et al. [168] designed the open image denoiser, enabling combined
volume and surface denoising in real time and outperforming current denoisers in scenes containing both surfaces
and volumes.

5.6.2  Super resolution

Super resolution (SR) aims to increase the spatial resolution of images or video frames. In real-time rendering, these
methods are mainly for reducing the computational cost by rendering at a lower resolution and then upsampling
to the native resolution. Xiao et al. [169] introduced the deep-learning approach for high-quality upsampling of
rendered content. Their method utilizes the available information (e.g., depth, motion vector) across multiple frames
and contains a reweighting mechanism to filter out invalid pixels. Guo et al. [170] designed a classifier, and the
network uses the classification results to blend the current frame with the warped last frame via a learned weight
map to get the supersampling results. They also developed dedicated loss functions to mitigate ghost artifacts.
Yang et al. [171] considered the real-time applications on compute-limited hardware. They reuse only one previous
frame and use a sub-pixel sample pattern to maximize efficiency and preserve details. Besides, they proposed a novel
metric, IF-SSIM, to evaluate the temporal stability of a video quantitatively and a public dataset, GameVideo57,
which contains 57 rendered videos and auxiliary buffers. Zhong et al. [172] utilized high-resolution auxiliary G-
buffers as additional input and introduced an efficient and effective H-Net architecture to align and fuse features at
multi-resolution levels. Several commercial software packages are available to support SR, including DLSS1 [173],
FSR1/2 [174], and XeSS [175].

5.6.3  Frame interpolation/extrapolation

Frame interpolation/extrapolation aims to increase the frame rate by interpolating intermediate or extrapolating
subsequent frames between successive input frames. Guo et al. [176] presented a robust hole-marking strategy to
classify the region for inpainting and shading prediction. They also utilize lightweight gated convolutions to enable
fast inference. Briedis et al. [177] considered the cases when the motion vectors are not valid and utilize a cost
volume built from input frames and auxiliary feature buffers (e.g., albedo and depth) to obtain the optical flow
as motion representation. Wu et al. [178] designed a learnable motion vector, which offers more robust motion
tracking. They developed a feature streaming network, dubbed FSNet, to enable adaptive frame prediction to serve
diverse applications on demand. Briedis et al. [179] designed a kernel-based interpolation model consisting of an
attention-inspired mechanism to fill holes in warping keyframes and an adaptive interpolation strategy to achieve
better results for a given render budget. Wu et al. [180] built a unified pipeline for both SR and extrapolation, which
contains a lightweight G-buffer guided warping module to obtain a good initialization and a flow-based Refinement
network to generate high-quality results. He et al. [181] adopted a unified context and a shared neural network to
achieve high efficiency and designed a reshading random masking and efficient reshading module to improve the
performance. Their method also supports joint SR and extrapolation. Some advanced software supports joint SR
and frame interpolation/extrapolation, including DLSS2/3 [173] and FSR3 [174].

6 Content generation

3D content is the dominant content form in VR. Most VR application developments begin with constructing 3D
objects or 3D scenes as the foundation for the subsequent rendering and simulation processes. The recent progress
of deep generative models provides a new way to generate 3D content conditioned on text or 2D images, which
significantly reduces the workload of artists or the burden of capturing the process in 3D reconstruction.

6.1 Generative models

In machine learning, generative models refer to those models that try to represent data distribution or the process of
data generation. For content generation, generative adversarial networks (GANSs) and diffusion models are popular
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since these two models are proven to be effective in image generation, 3D object generation, and 3D scene generation.

GANSs, first proposed by Goodfellow et al. [182] in 2014, are designed to learn a mapping from a Gaussian
distribution to a data distribution through an adversarial training strategy. Specifically, a generator G and a
discriminator D are simultaneously trained. The generator G learns to generate data samples from the latent data
distribution, while the discriminator D aims to distinguish between real samples and those generated by GG. During
training, G' aims to minimize the probability of D making correct classifications, effectively pushing the generated
samples closer to real data. Recently, GANs have achieved significant success in image generation tasks, prompting
researchers to explore their performance in 3D generation tasks. To this end, the generator G is trained to generate
3D data representations such as point clouds, voxels, meshes, or neural implicit representations. Achlioptas et
al. [183] proposed two networks, -GAN and 1-GAN;, to handle the generation of point clouds. The former directly
learns from raw point cloud data, while the latter incorporates a pre-trained autoencoder, achieving promising
results. Knyaz et al. [184] presented Z-GAN, which utilizes correspondences between 2D silhouettes and slices of a
camera frustum to predict a voxel model of a scene with multiple object instances. For implicit representations, Luo
et al. [185] applied adversarial training with spherical mapping to model the implicit surfaces of objects, resulting
in smoother and more realistic results. Schwarz et al. [186] proposed a model that combines NeRFs with GANs,
enabling the synthesis of high-resolution images.

However, it is challenging for GANs to generate data with extremely complex, high-dimensional distributions.
Alternatively, diffusion models derived from the classical score matching method learn the data sampling process
to find a path for a Gaussian noise input to reach the real data distribution [187]. These models can outperform
GANSs after being trained on a large amount of data. The key idea of diffusion models is to transform the original
data distribution into a simpler distribution, such as a Gaussian distribution, through a series of noise-driven steps
called the forward process. Then, the model learns to reverse this process, known as the inverse process, to generate
new samples similar to the original data distribution. Researchers have also combined denoising diffusion models
with various types of 3D representations to explore their effectiveness in 3D generation. Luo et al. [188] proposed
a diffusion probability model for generating point clouds, modeling the reverse diffusion process for point clouds
as a Markov chain conditioned on a certain shape latent. Liu et al. [189] trained a diffusion model to generate
deformable tetrahedral grids, and meshes can be extracted from the generated grids. Shap-E [190] and SDF-
Diffusion [191] integrate diffusion models with implicit representations. The former directly generates parameters
of implicit functions, which can be rendered as textured meshes and NeRFs. The latter generates a low-resolution
signed distance function in the first stage and performs high-fidelity super-resolution in the second stage.

6.2 Object generation

Object generation is the basis for building virtual scenes. It involves creating detailed and realistic 3D models of
individual objects from scratch or based on limited input data. This process is pivotal in VR applications, where
the authenticity and accuracy of generated objects significantly influence the overall experience. Unlike simple 2D
image generation, 3D object generation requires a comprehensive understanding of an object’s geometry, texture,
and material properties.

As shown in Table 5, recent work builds upon diffusion models and large-scale datasets, basically including lifting
2D generative models, imposing multi-view images as priors, and training 3D native generation models.

6.2.1 Lifting 2D generative models

To leverage significant advancements in 2D image generation, as demonstrated by recent innovations such as
DALL-E [192], Imagen [193], and Stable Diffusion [194], many approaches have adopted image-based techniques,
focusing on lifting 2D images into 3D structures or using 2D images as priors. Poole et al. [195] were pioneers in
this field, introducing score distillation sampling (SDS) and utilizing 2D image generation with viewpoint prompts
to produce 3D shapes through NeRF [30] optimization. Despite the intriguing concept, early attempts often strug-
gled to consistently yield high-quality and diverse results, frequently requiring repeated parameter adjustments
and lengthy optimization processes. Subsequent enhancements in SDS have explored the potential of extending
the concept to various neural fields [196-201], ranging from DMTet [202] to the latest 3D Gaussian Splatting [35].
Contemporary modifications have significantly improved performance. Seo et al. [203] and Li et al. [204] attempted
to add a consistency module to utilize camera and semantic information. Chen et al. [205] introduced normal map
supervision to improve the convergence speed. Wang et al. [206] proposed variational score distillation, which infers
their distribution using a particle-based variational framework, enhancing the diversity and quality of generated
samples. However, 2D image diffusion models used in SDS still lack an explicit understanding of geometry and
viewpoint. The absence of perspective information and explicit 3D supervision can result in the so-called multi-head
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Table 5 Summary of studies related to 3D object generation.

Classification Method Venue Core technology 3D representation
Dreamfusion [195] ICLR 2023 Score distillation sampling (SDS) NeRF
Magic3d [196] CVPR 2023 DMTet + SDS Mesh
Points-to-3d [197] ACM MM 2023 Depth-guided SDS NeRF
HIFA [198] ICLR 2024 Variance regularization of z-coordinates NeRF
Dreamtime [199] ICLR 2024 Nonincreasing time sampling NeRF
Lifting ?D Hd-fusion [200] WACYV 2024 multiple noise estimation processes NeRF
gencrative GSGEN [201] CVPR 2024 3DGS + SDS 3DGS
3DFuse [203] ICLR 2024 3D consistency injection module NeRF
Sweetdreamer [204] ICLR 2024 Aligned geometric priors NeRF /Mesh
Fantasia3D [205] ICCV 2023 Normal-guided SDS Mesh
Magic123 [208] ICLR 2024 Hybrid 2D-3D SDS NeRF
Prolificdreamer [206] NeurIPS 2024 Variational SDS NeRF
Zero-1-to-3 [207] ICCV 2023 View-conditioned diffusion NeRF
MVDream [212] ICLR 2024 Multi-view diffusion NeRF
USD [209] arXiv 2023 Unbiased SDS NeuS
DreamGaussian [210] ICLR 2024 3DGS+SDS 3DGS
Impo'si'ng DreamCraft3D [211] ICLR 2024 Bootstrapped diffusion Mesh
g:;ge\;ww as SyncDreamer [213] ICLR 2024 3D-aware feature attention NeuS/NeRF
priors Imagedream [214] arXiv 2023 Image-prompt multi-view diffusion NeRF
Zerol23++ [215] arXiv 2023 Enhanced Zero-1-to-3 SDF volumes
Instant-3D [216] ISCA 2023 Sparse-view ViT Implicit fields
Wonder3D [217] CVPR 2024 Cross-domain diffusion Mesh
Richdreamer [218] CVPR 2024 Normal-depth diffusion Hybrid
One-2-3-45 [221] NeurIPS 2024 Generalizable NeuS NeuS
CLAY [240] TOG 2024 Native large-scale 3D diffusion transformer Mesh
3D Polygen [228] ICML 2020 Autoregressive sequence modelling Mesh
Native MeshGPT [229] CVPR 2024 GPT-inspired decoder-only transformer Mesh
generation XCube [230] CVPR 2024 Hierarchical voxel latent diffusion model Sparse voxel grids
models CraftsMan [241] arXiv 2024 Normal-based geometry refinement Mesh
Direct3D [242] NeurIPS 2024 Native large-scale image-to-3D generative model Mesh

Janus problem, where realistic 3D renderings fail to maintain view consistency, and each rendered view is perceived
as the front view.

6.2.2  Imposing multi-view images as priors

To improve viewpoint consistency, subsequent work introduces viewpoint information to generate consistent multi-
view images as prior. Liu et al. [207] introduced an innovative approach by training an additional mapping from the
transformation matrix to the pretrained stable diffusion model to incorporate viewpoint information into the image
generation process. This strategy allows the network to acquire prior knowledge regarding viewpoint positions and
distributions, thereby enhancing the overall generation quality. Alternative solutions also attempt to employ SDS
to optimize a coherent neural field [208-211], but they generally require a long optimization time. Shi et al. [212]
proposed an enhanced view-aware self-attention mechanism and viewpoint embedding method to directly generate
consistent multi-view images. Subsequent studies [213-219] have further improved the consistency of multi-view
image generation, enhancing the quality of object generation. Unlike the aforementioned methods that directly use
sparse-view neural surface field (NeuS) [220] reconstruction to obtain geometry, Liu et al. [221] had gone one step
further in One-2-3-45 to train generalizable NeuS on 3D datasets to achieve better quality. Since the above methods
are based on 2D image supervision for generating results, they focus more on the quality of the rendered images
and often overlook the geometric fidelity of the generated results. Consequently, the generated geometries tend to
be incomplete and lack detail.

6.2.3 3D native generation models

To address the challenges of image-based methods, a class of solutions that natively generate 3D objects has emerged.
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Large reconstruction model. The large reconstruction model (LRM) treats the generation problem as a single-
view or sparse-view reconstruction, utilizing a vision transformer as the backbone network to directly reconstruct
implicit representations that include both color and density attributes. One-2-3-45, though is viewed as using 2D
image priors, is a pioneer in this class of methods for their clever use of NeuS as a geometry proxy and revealing the
possibility of imposing 3D shape priors. Subsequent studies, such as Instant-3D [216], LRM [222,223], DMV3D [224]
and TGS [225], have introduced various strategies to enhance generation quality. Xie et al. [226] combined simple
shapes to create additional datasets, thereby improving the quantity of the dataset. However, these techniques still
focus on minimizing volumetric rendering loss rather than explicitly generating surfaces, which results in rough or
noisy geometries.

Explicit geometric representations model. Training directly on 3D datasets and generating explicit ge-
ometric representations can clearly address surface quality issues. Various representations have been attempted,
including point clouds, meshes, and voxels. Nichol et al. [227] utilized point clouds to achieve a consistent rep-
resentation of geometry and employ a transformer-based diffusion model for direct denoising on the point clouds.
This approach stands out for its simplicity and efficiency; however, it encounters significant challenges in converting
the generated point clouds into accurate, standard mesh surfaces. Polygen [228] and MeshGPT [229] take a dif-
ferent approach by natively representing meshes through points and surface sequences. These models are capable
of producing extremely high-quality meshes, however, they rely on small, high-quality datasets, which limit their
broader applicability. Ren et al. [230] proposed XCube, simplifying geometry into multi-resolution voxels before
diffusion. Though this strategy facilitates the process, it still faces challenges in managing complex prompts and
supporting a broad range of downstream tasks, limiting its overall flexibility. Methods for generating objects with
explicit representations are highly dependent on their respective required datasets, thereby limiting the available
data volume. Clearly, a unified representation method that can leverage all types of data is crucial for enhancing
the generative capabilities of these models.

Implicit geometric representations model. Introducing signed distance functions (SDF) or occupancy
fields and training directly on the processed 3D data is a common solution. Such approaches provide a more
explicit mechanism than NeRF for learning and extracting surfaces but require the latent encoding of watertight
meshes for generation. Park et al. [231] and Yariv et al. [232] utilized optimization techniques to create unique
representations for each geometry in the training dataset. However, the optimization process is sluggish, which
hampers training efficiency. Subsequent methods such as SDFusion [233], LAS Diffusion [234], and ShapeGPT [235]
leverage intuitive 3D variational autoencoders (VAE) to encode geometry and reconstruct SDF fields, significantly
mitigated the issue. Nevertheless, these methods are primarily trained and tested on ShapeNet [236], a dataset
with limited richness and quantity, which constrains the diversity and quality of the generated models. Gupta et
al. [237] employed a triplane VAE for both encoding and decoding SDF fields. On the other hand, Shap-E [190],
3DShape2VecSet [238], and Michelongelo [239] adopt a different trajectory by utilizing transformers to encode
the input point clouds into parameters for the decoding networks, signifying a shift towards more sophisticated
neural network architectures in 3D generative models. Furthermore, Zhang et al. [240] proposed an improved data
processing method to accommodate datasets of varying sources and quality. They customized a large-scale diffusion
transformer compatible with multiple controls to achieve high-quality object generation. By introducing post-
processing and physically based rendering (PBR) material generation modules, this method demonstrated potential
for integration into industrial pipelines. Li et al. [241] further proposed CraftsMan, which refines the generated
results by using 2D normal map diffusion, thereby enriching geometric detail. Wu et al. [242] attempted to use
convolutional decoders and triplane representation in the VAE decoder instead of Transformers.

Overall, methods that directly generate objects in implicit fields have demonstrated significant advantages in
terms of generation speed, quality, and diversity. However, there is still room for improvement in the quantity and
quality of training data, especially when compared to the 2D image datasets used for training stable diffusion. As
the community continues to expand training datasets with more diverse 3D graphics and corresponding textual
descriptions, we anticipate reaching new levels of quality and complexity in object generation.

6.3 Scene synthesis

Unlike the aforementioned 3D object generation methods, scene synthesis focuses more on perceiving and under-
standing objects within the scene, thus generating complex scenes with reasonable layouts and imaginative content.
Achieving realism and visual coherence in scenes can be challenging due to the intricate interplay of various el-
ements and the overall expression and aesthetic appeal. Recent methods integrate semantic understanding and
hierarchical sequential generation into the aforementioned generation model to enhance the overall coherence. The
basic methods of scene synthesis include implicit scene synthesis and explicit scene synthesis. Figure 11 shows the



Wang L L, et al. Sci China Inf Sci January 2026, Vol. 69, Iss. 1, 111101:29

Implicit Scene Synthesis

— GAN
e AE NeuralField-LDM [247] 3D-SceneDreamer [250]
. . SceneDreamer [243] Compositional3s [2§1]
=== Diffusion
[C3D [244] Text2NeRF [249]
— LM
| isCoScene [246] Cext-to-4D [248]
T T
022 2023 024 2025
TISS [253] MIME [254]

Diffuscene [255]

Commonscenes [256]
GANformer2 [252
[252] LayoutGPT [257]

Explicit Scene Synthesis

Figure 11 Timeline of the development of scene generation technologies in recent years.
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Figure 12 The pipeline of CC3D in the work of Bahman et al. [244]. CC3D takes a floorplan projection of the semantic scene layout and a
noise vector as inputs. A 2D feature field is generated by a conditional StyleGAN-V2 backbone based on the given layout, and then the channels
are reshaped into a 3D feature volume. This 3D feature volume is queried using trilinear interpolation and subsequently decoded into color
and density using a small MLP. A superresolution module is used to upsample volume-rendered images to the target resolution, and a standard
StyleGAN-V2 discriminator is used. In order to ensure semantic consistency between the layout and the rendering, equidistant coordinates are
sampled from the feature volume, and features are processed with a semantic segmentation decoder added to the discriminator.

development of recent scene synthesis methods in these two aspects, which illustrates the trend of evolution from
GAN and AE-based methods to LLM and diffusion-based methods.

6.3.1 Implicit scene synthesis

Implicit scene synthesis leverages continuous functional representations to generate scenes. SceneDreamer [243] is an
unconditional generative model that achieves unbounded 3D scene generation from in-the-wild 2D image collections
only with a BEV (bird’s-eye-view) scene representation. To achieve controllable scene generation, some methods
introduce constraints like layout, text, and image priors. Bahmani et al. [244] injected 2D layout information
as a prior into the 3D scenes generative model, simultaneously achieving performance and efficiency. Figure 12
visualizes the framework of their GAN-based implicit scene synthesis. However, due to its lack of composition
modeling, the model fails to generate infinite 3D scenes. To address this issue, BerfScene [245] employs a BEV-
conditioned equivariant representation, facilitating seamless composition and infinite-scale scene generation. Xu et
al. [246] regarded an abstract object-level representation as the scene layout and proposed a 3D-aware generative
model to spatially disentangle the scene into object-centric generative radiance fields. Compared to layout priors,
text or image-based controls are a more intuitive solution. Kim et al. [247] designed a scene auto-encoder to encode
images into an implicit neural field representation. Zheng et al. [248] proposed a two-stage unified approach for text-
and image-driven dynamic 3D scene generation. Zhang et al. [249] provided a pipeline to optimize a NeRF model
with text-related scene priors. The scene priors consist of a content prior generated from a text-driven 2D diffusion
model and a geometric prior obtained from a monocular depth estimation method. Zhang et al. [250] put forward
a text-driven unified solution for both 3D indoor and outdoor scene generation that can also facilitate navigation
using arbitrary 6-DOF camera trajectories, benefiting from its tri-plane-based implicit representations. Applying
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Figure 13 (Color online) The pipeline of CommonScenes in the work of Zhai et al. [256]. CommonScenes consists of shared modules and
two collaborative branches layout branch and shape branch. A box-enhanced contextual graph is fed into the contextual encoder, yielding a
joint layout-shape distribution. A graph manipulator is then optionally adopted to manipulate the graph for data augmentation. Next, the
updated contextual graph is fed into the layout branch and shape branch for layout regression and shape generation, respectively. In the shape
branch, the relation encoder is leveraged to encapsulate global scene-object and local object-object relationships into graph nodes, which are
then conditioned to the denoiser in LDM via the cross-attention mechanism to generate the shape latent back in some steps. Finally, a frozen
shape decoder (VQ-VAE) reconstructs a shape using the latent shape. The final scene is generated by fitting the shape to the layouts.

layout and text guidance simultaneously, Po et al. [251] presented a locally conditioned diffusion for compositional
scene diffusion, allowing control over semantic components with text prompts and bounding boxes for seamless
transitions.

6.3.2  Euxplicit scene synthesis

Explicit scene synthesis, on the other hand, focuses on the direct construction of scenes from predefined or generated
components, such as objects and layouts, offering more control and interpretability. Hudson et al. [252] introduced
GANformer2, which abandons traditional black-box GAN architectures, significantly improving the efficiency, con-
trollability, and interpretability of scene layout. ATISS [253] is a novel autoregressive transformer architecture used
to create diverse and plausible synthetic indoor environments with only the room type and its floor plan provided.
It is trained end-to-end as an autoregressive generative model, using annotated 3D bounding boxes as supervision.
Yi et al. [254] proposed mining interaction and movement to infer 3D environments (MIME), which is an indoor
scene generation model to produce furniture layouts consistent with human motion. By taking generated objects
and human motions in the scene as input, it predicts the next plausible object and generates scenes that are more
diverse and believable by incorporating human body information. Tang et al. [255] introduced DiffuScene, a dif-
fusion network to synthesize collections of 3D indoor objects by denoising a set of unordered object attributes. It
generates three-dimensional instance attributes stored within the unordered object set and assigns each object the
most similar geometric shape retrieved, which concatenates features of different attributes, including position, size,
orientation, semantics, and geometric features. Zhai et al. [256] proposed CommonScenes, a fully generative model
that can transform scene graphs into corresponding controllable 3D scenes. Its pipeline consists of two branches:
one branch predicts the overall scene layout via a variational autoencoder, while the other branch generates com-
patible shapes through latent diffusion, capturing the relationships between global scene objects and local objects
in the scene graph while preserving shape diversity. Figure 13 visualizes the framework of their diffusion-based
explicit scene synthesis. Feng et al. [257] investigated how large language models can act as visual planners by gen-
erating layouts based on textual conditions, collaborating with visual generation models. They proposed a method
called LayoutGPT, which uses a style sheet language to write context visual demonstrations, achieving excellent
performance in 3D indoor scene synthesis.

In summary, both implicit and explicit scene synthesis methods have their unique advantages for scene generation
tasks. Implicit methods offer a more organic and fluid approach to scene creation, while explicit methods provide
greater control and precision. As the field continues to evolve, we can expect to see even more sophisticated
techniques that combine the strengths of both approaches to create truly immersive and dynamic virtual scenes.
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Table 6 We categorize recent studies on neural physics simulation by the type of physical phenomena they target—rigid bodies, soft bodies,
fluids, and others—while analyzing both their geometric representations and neural network architectures.

Classification Method Venue Representation Model
Groth et al. [263] ECCV 2018 Mesh CNN
Rigid-body Ehsani et al. [262] CVPR 2020 Mesh Encoder-decoder
Zesch et al. [258] SIGGRAPH Asia 2023 Mesh DNN
Lyu et al. [264] TVCG 2020 Mesh CNN & GAN
Santesteban et al. [268] CVPR 2021 Mesh VAE & diffused model
Bertiche et al. [270] TOG 2022 Mesh Encoder-decoder
Soft-body Wang et al. [265] CVPR 2023 Mesh VAE
Zong et al. [277] SIGGRAPH Asia 2023 Particle & grid Neural field
Romero et al. [278] SIGGRAPH Asia 2023 Mesh Neural descriptor fields
Feng et al. [280] CVPR 2024 Particle NeRF
Yang et al. [284] CAVW 2016 Grid ANN
Ma et al. [302] TOG 2018 Grid RL
Ummenhofer et al. [293] ICLR 2019 Particle Continuous CNN
Xiao et al. [285] CGF 2019 Grid CNN
Xiao et al. [286] TVCG 2020 Grid CNN
Kim et al. [301] TOG 2020 Particle CNN
Fluid Yan et al. [305] TOG 2020 Mesh & particle GAN
Chu et al. [283)] TOG 2021 Grid GAN
Guo et al. [291] TOG 2021 Grid CNN
Aurand et al. [292] TOG 2022 Grid CNN
Chu et al. [289] TOG 2022 Grid PINN
Prantl et al. [300] NeurIPS 2022 Particle CNN
Deng et al. [287] TOG 2023 Grid InstantNGP-like INR
Ren et al. [303] TOG 2022 Particle & grid RL
Sanchez-Gonzalez et al. [309] ICML 2020 Particle GNN
Others Li et al. [312] ICLR 2023 Particle & grid NeRF
Zhang et al. [313] TOG 2020 Particle RL
Jiang et al. [314] SIGGRAPH 2024 Mesh 3DGS

7 Physical simulation

Physical simulation plays a crucial role in enhancing user experience in VR environments by enhancing user immer-
sion, improving user interactivity, and supporting specific professional needs. First, by providing physical animations
that adhere to real-world laws, users are more likely to trust the VR content and become more deeply immersed
in the virtual experience. Second, the real-time evolution of physical phenomena offers intuitive and physics-based
feedback, significantly enhancing the experience with immediate and realistic interactions. Lastly, accurate physics
simulation allows VR applications to extend into professional domains such as educational experiments, medical
surgeries, and engineering operations, providing a specialized and advanced VR experience. Learning-based tech-
niques have recently introduced a revolutionary methodology to physics simulation. These techniques enhance
conventional numerical algorithms for physics simulation, which have been developed over decades, to efficiently
generate high-quality results for specific physical phenomena, significantly improving the user experience. From
a methodological perspective, we categorize these learning-based techniques into two major areas: neural physics
simulation, and differentiable physics simulation. As the dominant branch, neural physics simulation focuses on
developing neural network models that replicate, replace, or enhance conventional simulators, supporting tasks such
as physics solving, reconstruction, generation, augmentation, and control. We summarize representative research
works in Table 6, highlighting the diverse underlying geometric representations and their corresponding neural
network architectures. In contrast, differentiable simulation extends traditional numerical simulators by enabling
gradient backpropagation through the entire simulation process, facilitating applications in system identification,
optimization, control, and inverse problem-solving. As shown in Figure 14, differentiable simulation techniques
have been increasingly adopted across various simulation frameworks. In the following sections, we will discuss the
progress of research in learning-based methods in physics simulation, categorized by physical phenomena for more
intuitive navigation—covering areas such as rigid-body dynamics, soft-body dynamics, fluid dynamics, and other
types of physical systems.
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Figure 14 (Color online) We provide a summary of differentiable simulation studies, organized according to their geometric representations
and adopted simulation frameworks.

7.1 Rigid-body simulation

Rigid-body simulation mainly focuses on the multi-body system, involving multi-body collision, friction, and var-
ious joint constraints within articulated bodies, all of which can be improved through learning-based approaches.
Nvidia [258] reformulated collisions as a novel smoothed integral to address sampling issues commonly found in
many classic collision-handling algorithms. Since the integral is difficult to calculate numerically, they trained an
integrated neural network to represent the collision fields which can efficiently solve collisions for numerous bodies.
Their method achieves approximately 100 times speed-up compared to the optimized sampling-based method while
exhibiting 2-3 times lower relative error under similar runtime settings. As for differentiable multi-body dynamics,
Qiao et al. [259] introduced an efficient method for differentiable simulation of articulated bodies. By deriving the
gradients of the contact solver using spatial algebra and the adjoint method, their approach runs 10x faster while
consuming 100x less memory footprint compared to traditional autodiff tools. Similarly, in another work [260],
they improved projective dynamics with a top-down matrix assembly algorithm and used a new matrix splitting
method to apply a generalized dry friction model designed for the soft continuum in their system. Geilinger et
al. [261] extended the unified treatment of frictional contact for both rigid and deformable bodies to the domain of
robotic motion control. In addition to directly applying differentiable rigid body physics to the simulation of more
complex systems, the simulation results of rigid bodies can also be used to infer interactions with rigid objects in
video data [262]. This can help neural networks gain a better understanding of the underlying physical principles
present in the video. Groth et al. [263] adopted a similar approach, leveraging rigid body simulation to enable
models to gain physical intuition. This allows the models to autonomously construct stable stack structures and
even restore balance to initially unstable stacks.

7.2 Soft-body simulation

Soft-body simulation is widely used for materials of various dimensions, including hair, cloth, and interactive
volumetric soft bodies. By applying neural networks to their fixed topologies, learning-based methods enhance
the efficiency and accuracy of dynamics, as well as provide improved interaction, reconstruction, and generation
capabilities.

7.2.1 Hair and cloth simulation

In virtual reality, the realism of hair and cloth motion is essential for achieving lifelike character fidelity, whether for
humans or animals. Recent advancements in learning-based methods have dramatically enhanced the simulation of
hair and cloth, leading to a more immersive and engaging VR experience.

For hair simulation, Lyu et al. [264] proposed the first CNN-integrated framework for diverse hairstyles, achieving
visually realistic hair simulation at interactive speeds (6.4 FPS with over 60k strands, compared to 0.4 FPS with full
simulation). Pre-trained on representative hairstyles, the neural interpolator and fine-scale displacement generator
exhibit robust generalization across new hairstyles and poses, making it suitable for interactive VR applications.

Wang et al. [265] introduced a two-stage data-driven approach that models hair independently of the head. The
first stage learns hair geometry, tracking, and appearance for state compression, while the second stage samples
temporally adjacent hair encodings to train a temporal transfer module for dynamic modeling.

Regarding cloth simulation, Liang et al. [266] differentiated a cloth simulator to estimate material properties and
control cloth motion. In their work, the cloth simulation is embedded as a layer within neural network frameworks,
providing an effective and robust method for modeling cloth dynamics, self-collisions, and contacts. Li et al. [267]
developed a PD-based differentiable cloth simulator that efficiently handles gradients in the presence of complex
contact events. To address garment-body collisions, Santesteban et al. [268] proposed a novel data-driven method for
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Figure 15 (Color online) A key strategy in learning-based accelerated soft-body simulation in the work of Fulton et al. [274] is to encode
dynamic features into a reduced-order latent space.

virtual try-on. They introduced a diffused character model to extrapolate body surface properties, which are then
used to project garments to a canonical space. This representation was used to train a generative model with a novel
self-supervised collision term, effectively solving garment-body inter-penetrations. Meanwhile, Bertiche et al. [269]
proposed an unsupervised deep learning approach to obtain realistic pose space deformations via implicit physics-
based simulation. This method is efficient and easily integrated. Furthermore, Bertiche et al. [270] introduced
the first method to learn cloth dynamics unsupervised, employing a novel disentangled architecture that enhances
generalization for new motion augmentation. Reconstructing the appearance and motion of cloth from real-world
data is another important topic for cloth animation. It provides highly customized cloth generation and improves the
authenticity in the VR environment. Zhang et al. [271] presented a network model called dynamic neural garments,
which takes the target skeleton motion as input and efficiently outputs realistic dynamic garment appearances from
a desired viewpoint. To enhance the physical fidelity of cloth animation on virtual characters for VR users, Xiang
et al. [272] proposed a physically inspired clothing appearance network that generates realistic cloth simulations
on photorealistic characters. Neural cloth animation can be further applied in interactive applications. Wang et
al. [273] presented a deep-learning approach for semi-automatic garment animation. Their system enables users to
define the desired garment shape in keyframes for interactive editing and visualization. For new character motions,
the latent representation automatically generates plausible garment animations at interactive rates.

7.2.2  Volumetric soft-body simulation

In addition to the contribution of hair and cloth motion to the physical fidelity of VR environments, volumetric
soft-body simulation also plays a significant role. Traditional volumetric soft-body simulations are often inefficient
and challenging to control. Neural networks mitigate these issues by learning the dynamics of volumetric soft-body
simulations.

Fulton et al. [274] proposed an approach that solves deformable solid dynamics using a variational formulation of
implicit integration in the latent space. As shown in Figure 15, this reduced model, trained on example deformations
with an autoencoder, accelerates simulation by operating in a low-dimensional nonlinear latent space. To better
control volumetric soft-body simulations, Du et al. [275] developed a fast, differentiable simulator based on projective
dynamics and a differentiable collision handling algorithm. This simulator accelerates backpropagation by exploiting
the prefactorized Cholesky decomposition, allowing physics priors to integrate more effectively into data-driven
approaches for dynamical systems involving soft-bodies, resulting in a 4-19 times speedup compared to standard
Newton’s method. Huang et al. [276] developed a general differentiable solver that integrates the incremental
potential contact (IPC) method, supporting both static and dynamic problems while enabling differentiation with
respect to geometric and physical parameters. Zong et al. [277] introduced a hybrid framework combining neural
networks and physics for modeling elastoplasticity and fracture. They used neural stress, deformation, and affine
fields in MPM, achieving a significant reduction of approximately 10 times in computation time and around 100000
times reduction in memory usage. Unlike previous works focused on specific object pairs, Romero et al. [278]
developed a neural model that supports general rigid collider shapes with a novel collider descriptor. This learning-
based deformation model produces detailed animations and enables object exploration and manipulation.

Applying neural soft-body techniques in reconstructed VR environments enables physically simulating and in-
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teracting with virtual objects, enhancing the user’s VR experience. Yang et al. [279] adopted the differentiable
backward solver proposed by Du et al. [275] to develop an implicit neural representation for controlling active soft
bodies. Their method is applicable to volumetric soft bodies and facial expressions, offering potential for interactive
applications in virtual reality. Feng et al. [280] proposed PIE-NeRF, integrating physics-based hyperelastic simula-
tions with NeRF to generate realistic elastodynamics of real-world objects. The geometry of the objects is sampled
in a meshless manner, followed by spatial model reduction, enabling versatile simulations at interactive rates. Users
can interact with the objects by applying external forces in 3D scenes. Zhang et al. [281] proposed PhysDreamer,
enabling real-time, physics-based interaction with 3D objects using the differentiable MPM method. They utilized
prior knowledge of object dynamics learned from 3D Gaussian pre-trained video generation models to enable static
3D objects to respond dynamically to interactive stimuli in a physically plausible manner.

7.3 Fluid simulation

Fluid simulation, characterized by its complex physical properties and evolving intricate geometry governed by
the Navier-Stokes equations, presents significant challenges in the physical simulation. Learning-based techniques
open up new possibilities for understanding fluid materials, geometry, and dynamics and for further reconstructing,
enhancing, and generating fluid phenomena.

7.3.1 Gas simulation

Gaseous phenomena such as wind, smoke, and fire are common in the real world. Researchers have long studied
these basic fluid phenomena and are now integrating them with learning-based techniques to create more realistic or
faster simulations in various applications. The relevant studies are generally divided into neural dynamics simulation
and neural effect generation. We will commence with the neural dynamics simulation of gaseous phenomena.

Takahashi et al. [282] introduced a differentiable smoke simulator integrated with neural networks for learning
dynamics and solving control problems, enabling efficient gradient computation and one-way fluid-solid coupling
with sub-grid details, outperforming prior techniques for fluid control and inverse problems. Chu et al. [283]
introduced a data-driven adversarial model for deriving fluid velocity fields from density maps, enabling control via
obstacles, parameters, energy, and vorticity for more interpretable and controllable fluid simulations.

Researchers are also exploring the neural physics solver, a novel technique that utilizes neural networks to
predict physics dynamics efficiently. By encoding and learning the physics state in latent space, neural solvers
achieve superior performance and accuracy compared with traditional numerical solvers. A data-driven projection
methodology, pioneered by Yang et al. [284], harnesses the power of artificial neural networks to expedite the
projection phase in smoke simulations, ensuring consistent computational efficiency regardless of the complexity of
the scene. Xiao et al. [285] proposed a learning-based flow correction method using a deep convolutional neural
network to quickly preview Eulerian smoke simulations, accurately matching low-resolution simulations to high-
resolution counterparts. They [286] also presented a neural solver that leverages a deep convolutional neural network
to efficiently tackle large-scale Poisson systems in Eulerian smoke simulations, achieving a significant speedup of up
to two orders of magnitude in the projection step while maintaining both accuracy and versatility. Deng et al. [287]
introduced neural flow maps, a neural solver that leverages implicit neural representations and flow map theory to
achieve state-of-the-art vortical smoke simulations using spatially sparse neural fields, preserving intricate vortical
structures with high fidelity. Compared with modern numerical solvers, it reduces advection error by about an
order of magnitude.

While neural physics solvers aim to replicate physical behavior, other methods focus on reconstructing simulations
from limited data and augmenting them with stylistic control. Eckert et al. [288] introduced ScalarFlow, a large-
scale dataset of real-world smoke reconstructions, and a framework for accurate physics-based recovery from sparse
videos, highlighting complex buoyancy-driven flows for graphics, vision, and learning applications. Chu et al. [289]
presented a novel approach for high-fidelity fluid reconstruction from sparse videos, leveraging Navier-Stokes physics
and neural networks, resolving fluid-obstacle interactions and ambiguities to enable robust reconstructions.

Researchers have been investigating gas style transfer, a method for controlling the appearance of generated gas
in a unique way. It involves adding customizable details without violating the physical laws of smoke flow. Kim et
al. [290] introduced a neural style transfer method for smoke simulations, enabling content-aware manipulation with
natural image features. Guo et al. [291] proposed a neural network approach for volumetric style transfer, efficiently
creating heterogeneous single-scattering albedo volumes from 2D style images and enabling diverse translucent
effects for 3D models. Aurand et al. [292] introduced an improved volumetric neural style transfer method for
smoke simulations, enabling faster, simpler, and more controllable stylizations while eliminating camera-dependent
artifacts through a feed-forward neural network.
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7.3.2  Liquid simulation

Unlike gases, liquid phenomena—such as water, oil, or honey—are typically more intricate, often involving highly
dynamic free surfaces and strict incompressibility. In recent years, learning-based methods have emerged as a novel
approach for simulating a range of complex liquid behaviors.

In the realm of neural dynamics solver, Ummenhofer et al. [293] presented a Lagrangian liquid simulation uti-
lizing convolutional networks with spatial convolutions on dynamic particles, surpassing previous methods in both
accuracy and speed for various material simulations. Shao et al. [294] introduced TIE, a transformer-based ap-
proach for particle-based liquid simulations, which captures particle interactions without relying on explicit edges,
demonstrating superior performance and generalization compared to graph neural network methods. Li et al. [295]
developed MPMNet, a hybrid data-driven framework that integrates the material point method (MPM) with neu-
ral networks to achieve efficient and precise liquid-solid interactions, maintaining physical accuracy while enabling
numerical acceleration (28x speed-up compared with the conventional method).

Reconstruction of liquid effects is often challenging due to the transparent nature of liquids. As a result, current
efforts primarily focus on inferring the internal dynamics of liquids from observable fluctuations on the liquid
surface. Franz et al. [296] introduced a novel volumetric flow reconstruction method employing global transport
formulation and learned self-supervision, enabling realistic fluid motion reconstruction from sparse views. Guan
et al. [297] presented NeuroFluid, an unsupervised two-stage network designed for liquid dynamics reconstruction
from visual observations. This method utilizes a particle-driven renderer and a transition model to estimate fluid
physics accurately. Xiao et al. [298] proposed a novel framework for reconstructing liquid dynamics from sparse
observations. By leveraging a differentiable simulator and divergence-free eigenfunctions, this method achieves
physically consistent and efficient fluid reconstruction.

Another set of works aims to enhance neural liquid simulation with finer detail, strict adherence to physical con-
straints, or specific artistic styles. Roy et al. [299] introduced a deep up-scaling technique for high-resolution liquid
details, leveraging neighborhood convolutions and particle-based interpolation. In addition, Prantl et al. [300] intro-
duced a method using antisymmetrical convolutions to strictly conserve momentum in learned liquid simulations,
resulting in enhanced details. Besides, a neural style transfer approach for 3D fluids [301] was presented, leverag-
ing a Lagrangian particle representation to enhance artistic control over liquid details while improving temporal
consistency and reducing computational time.

Controlling or interacting with liquids is a topic that creates immersive and engaging experiences for users,
especially in contexts highly relevant to VR applications. For liquid control, considering the complexity of the
liquid system, recent researchers prefer to apply reinforcement learning techniques to achieve the indirect control of
fluid-solid coupling systems. Ma et al. [302] proposed a neural-network-driven controller, trained by reinforcement
learning, to control liquid jets and rigid body interactions at simulation boundaries, generating plausible anima-
tions for 2D tasks. Ren et al. [303] proposed an adaptive learning-based controller for coupled fluid-solid systems,
excelling in liquid control tasks through meta-reinforcement learning and a novel task representation. Additionally,
a differentiable SPH-based fluid-rigid coupling simulator [304] enables efficient rigid body control in liquid environ-
ments, addressing gradient issues and minimizing computational costs. For interacting with liquids, Yan et al. [305]
presented a novel system that enables amateur users to generate realistic liquid splashes in minutes, leveraging a
conditional GAN trained on physics-based simulations and considering stroke trajectory and speed for intuitive
liquid interaction in a VR environment. Feng et al. [306] demonstrated the integration of physics-based animations
of solids and fluids with 3D Gaussian Splatting to create realistic scenes, focusing on liquid interactions through
enhanced kernel normals and physically based rendering for dynamic surface reflections.

7.4 Other physical simulation

In addition to these specific fields of physics simulation, other studies aim to develop general neural frames or
techniques for multi-physics simulation. Hu et al. introduced diffTaichi [307,308], a framework based on the Taichi
language, enhancing both the efficiency and productivity of general-purpose differentiable physics simulations.
Sanchez-Gonzalez et al. [309] proposed graph network-based simulators (GNS) to reproduce various particle-based
physics simulations, including fluids, rigid, and deformable. By treating underlying particles as graph nodes, GNS
encodes the input state in a latent graph and predicts the dynamics via learned message-passing on the graph. Nvidia
has implemented a multi-physics field simulation framework called SimNet [310], which takes spatial location and
physical parameters as inputs and learns the PDE solutions through a fully connected network. SimNet has been
applied in both forward simulations involving turbulent details and complex obstacles and inverse problems like
industrial design optimization. They validate SimNet by conducting a comparative study with OpenFOAM and
a commercial solver, where SimNet achieves 45000x and 135000x acceleration, respectively, while maintaining a
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15% prediction error compared to OpenFOAM’s 4.5%. Recently, Wang et al. [311] advanced the grid-based neural
simulation by employing a multi-resolution hash grid. To improve the accuracy and flexibility in elastic deformation
and vortical flows, they introduced two key enhancements: a high-order differential operator for optimization
efficiency and an octree-based neural geometry sampling method to accelerate interface searching.

Leveraging these multiphysics simulation techniques, researchers are pioneering new frontiers in VR-related appli-
cations, such as real-world physical reconstruction, immersive physical interactions, and physical content creation.
Building upon MPM, Li et al. [312] proposed physics augmented continuum neural radiance fields (PAC-NeRF) to
reconstruct the physical effects from multi-view videos, capturing both physical parameters and geometries. PAC-
NeRF ensures the physical plausibility of reconstruction by integrating NeRF techniques with continuum mechanics
through a hybrid Eulerian-Lagrangian representation and an MPM differentiable simulator. As for the interaction,
Zhang et al. [313] introduced a reinforcement learning framework with a position-based dynamics (PBD) simulator
to train characters in manipulating amorphous materials. Jiang et al. [314] implemented VR-GS, a highly realistic
interactive system in VR based on the Gaussian Splatting techniques. Starting from a Gaussian Splatting scene, the
system constructs a simulation-ready environment through segmentation, inpainting, and mesh reconstruction and
incorporates a PBD simulator for an immersive interactive VR experience. Huang et al. [315] introduced Diff VL, a
method allowing non-expert users to communicate soft-body manipulation tasks using vision and natural language.
Their method leverages large language models to assist the differentiable physics solver in handling long-horizon,
multistage tasks. Physically based content creation is an emerging topic. Qiu et al. [316] proposed feature splat-
ting to enable language-driven, physics-based Gaussian Splatting scene editing. Using multi-view photos and text
prompts as inputs, feature splatting constructs a Gaussian Splatting segmented scene with a large-scale 2D vision
model, automatically assigning physical attributes to scene components. An MPM-based physics engine is further
integrated to create realistic physics animation within the Gaussian Splatting scene.

8 Virtual character

The research on virtual characters is mainly concerned with the digitization and animation of real-world characters
or generated characters. The two most commonly used types of virtual characters in VR applications are avatars
and agents. Avatars are usually motion-driven, and currently, text and audio inputs are used to generate motions,
based on which animatable avatars are explored to create realistic and adaptable virtual characters. Research on
agents has focused on exploring agents that can autonomously respond to the environment, thus enhancing the
interactivity and realism of the virtual experience.

8.1 Motion generation

Motion generation aims to generate realistic and varied human movement sequences, which have various applications
in the VR domain, such as teaching and training, and contextual extrapolation. The primary challenge of motion
generation lies in creating sequences that are both perceptually realistic and diverse. Based on different input
types, the generation of gestures is mainly divided into text-based gesture generation, including action commands
and general text-based methods, and audio-based gesture generation, including speech and music-based methods.
In Table 7, we list some representative research studies and the datasets they used [317,331,334,335,338-349].

8.1.1 Text-based motion generation

Text-based motion generation uses textual descriptions to create corresponding motion sequences. The core concept
behind it is combining natural language processing with motion generation, enabling computers to understand
textual descriptions and produce corresponding actions. It mainly includes two types: generating motion sequences
from specific action commands (action-to-motion) and generating motion sequences from general textual descriptions
(text-to-motion).

Action-to-motion aims to produce precise and accurate motion sequences based on explicit action instructions
with high controllability and predictability such as “walk”, “jump”, or “turn left”. Action2Motion [317] introduces a
novel VAE framework based on Lie Algebra to generate diverse and natural sets of human motions for specified action
categories. Petrovich et al. [318] introduced ACTOR, a transformer-based architecture with positional encodings
to generate variable-length motion sequences directly, avoiding mean pose regression and introducing the sequence-
level embedding, unlike frame-level approaches such as Action2Motion. SA-GCN [319] combines the self-attention
mechanism with graph convolutional networks (GCN), dynamically focusing on key past frames to capture structural
information in action sequences effectively. Likewise, Kinetic-GAN [320] combines the advantages of GANs and
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Table 7 Summary of studies related to human motion generation.

Classification Method Venue Model Representation Dataset
Action2Motion [317] ACM MM 2020 VAE Rotation Action2Motion [317], NTU-RGB+D 120 [338]
ACTOR [318] ICCV 2021 VAE Rotation Action2Motion [317], NTU-RGB+D 120 [338], UESTC [339]
SA-GCN [319] ECCV 2020 GAN Keypoints NTU-RGB+D 120 [338], Human3.6M [340]
Action Kinetic-GAN [320] WACV 2022 GAN Keypoints NTU-RGB+D 120 [338], Human3.6M [340], NTU-RGB+D [341]
ODMO [321] MM 2024 VAE Keypoints Action2Motion [317], UESTC [339]
PoseGPT [322] ECCV 2022 VAE Rotation Action2Motion [317], BABEL [342], GRAB [343]
MultiAct [323] AAAT 2023 VAE Keypoints/rotation BABEL [342]
Text2Action [324] ICRA 2018 GAN Keypoints MSR-VTT [344]
JL2P [325] 3DV 2019 Regression Keypoints KIT Motion Language [345]
TEMOS [326] ECCV 2022 VAE Keypoints KIT Motion Language [345]
General text TM2T [327] ECCV 2022 VAE Keypoints HumanML3D [346], KIT Motion Language [345]
AvatarCLIP [328] TOG 2022 VAE Rotation AMASS [347]
MotionCLIP [329] ECCV 2022 Regression Rotation BABEL [342]
MoFusion [330] CVPR 2023 Diffusion Keypoints HumanML3D [346], BABEL [342], AI choreographer [348]
Speech2Gesture [331] CVPR 2019 GAN Keypoints Speech2Gesture [331]
Speech Audio2Gestures [332] ICCV 2021 VAE Keypoints/rotation Speech2Gesture [331], Trinity [349]
Yoon et al. [333] TOG 2020 GAN Keypoints Human3.6M [340]
ChoreoMaster [334] TOG2021 Motion Graph Rotation ChoreoMaster [334]
Music Pc-dance [335] MM 2022 Motion Graph Rotation Pc-dance [335]
MNET [336] CVPR 2022 GAN Rotation Al Choreographer [348]
EDGE [337] CVPR 2023 Diffusion Rotation Al Choreographer [348]
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Figure 16 (Color online) MotionCLIP in the work of Tevet et al. [329] trains a motion auto-encoder to simultaneously reconstruct motion
sequences while aligning their latent representations with corresponding text and image representations in CLIP space.

GCNs to generate human motion sequences from the latent space directly. Furthermore, Lu et al. [321] proposed
ODMO for generating 3D human motion sequences solely based on action types, utilizing contrastive learning for
effective style discovery and hierarchical trajectory control in its encoder-decoder architecture. PoseGPT [322]
compresses human motion into a discrete latent space based on an auto-regressive transformer, allowing generation
without relying on observed past motions. Additionally, some approaches focus on generating motions involving
multiple actions. For instance, MultiAct [323] achieves this by using a unified recurrent generation system to
produce realistic long-term 3D human motion sequences from multiple action labels.

The shortcomings of action-to-action in creating lifelike and adaptable movements are compensated by the fact
that text-to-action can generate motion sequences based on natural language inputs, thus allowing a wider range
of expressive motions. Text2Action [324] is a GAN-based SEQ2SEQ model with a text encoder converting input
sentences into feature vectors, enabling an attention-based action decoder to generate corresponding actions from
the encoded text sequences. Ahuja et al. [325] proposed the joint language-to-pose model (JL2P), which learns
a joint embedding space of these two modalities and employs a curriculum training strategy to handle sequences
of varying complexity. In recent years, the variational autoencoder has drawn a surge of interest because of its
capability to learn complex latent representations and generate diverse and realistic outputs. TEMOS [326] utilizes
VAE and incorporates a text encoder to generate expressive body motions. Similarly, TM2T [327] uses both motion
and text tokens, integrates the motion2text module into the inverse alignment process of the text2motion training
pipeline, and uses VAE to train them. Moreover, some models utilize the vision-language model to complete the
text-to-motion task. AvatarCLIP [328] leverages the contrastive language-image pre-training (CLIP) to supervise
neural human generation, enabling zero-shot generation of novel animated avatars. MotionCLIP [329] aligns 3D
motion with text labels in CLIP-space using a transformer-based auto-encoder, enhancing semantic understanding
and motion generation through CLIP’s visual insights, as shown in Figure 16. Additionally, diffusion models are
employed for their ability to generate high-quality and detailed outputs. Dabral et al. [330] introduced MoFusion, a
denoising-diffusion-based framework featuring a 1D U-Net for faster reverse diffusion, capable of generating motion
sequences from both music and text.
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8.1.2 Audio-based motion generation

Auditory signals are much more complex than text, and their features contain spectrograms, mel-frequency cepstral
coefficients (MFCCs), chroma features, and so on. When it comes to motion generation through audio, two aspects
are usually taken into account, namely the semantic information and the temporal structure, i.e., the rhythm, the
beat, and the timing information of the notes. Thus, this section focuses on two subtasks: speech-to-gesture and
music-to-dance correspondingly.

The goal of the speech-to-gesture task is to generate corresponding hand gestures based on speech input, making
the virtual characters perform natural and appropriate gestures while speaking. Some methods utilize only text,
while more rely solely on audio, and some combine both modalities. Ginosar et al. [331] generated motion from
speech by mapping audio to pose, with an adversarial discriminator ensuring realistic gestures. Audio2Gestures [332]
splits the latent code into shared and motion-specific codes to generate diverse gestures with random sampling and
relaxed motion loss. Yoon et al. [333] took the text, audio, and speaker identity all into consideration and generated
gestures under a multimodal context.

The music-to-dance task aims to generate motion sequences that correspond to a given piece of music, improving
the overall aesthetic and expressive quality of the dance movements for virtual characters. Some methods are based
on the classical motion graph framework, while some are based on GANs. On the one hand, ChoreoMaster [334] cap-
tures music-dance connections through choreomusical embeddings and integrates them into a graph-based synthesis
framework, and generates a dance sequence to synchronize with the input music, reflecting its style, rhythm, and
structure. Pc-dance [335] utilizes a music-to-dance alignment embedding network and pseudo-label of the rhythm,
generating dance with a posture constraint. On the other hand, MNET [336] integrates a music style code into the
generator and designs a multi-task discriminator for per-style classification. EDGE [337] uses a transformer-based
diffusion model paired with a music feature extractor to generate editable dance motions from music.

8.2 Avatar creation

3D avatar creation involves the reconstruction of the human body and the creation of animatable avatars. While
reconstructing the human body focuses on basic human digitization techniques to recover body geometry and
texture information for further avatar creation, creating animatable avatars emphasizes the development of avatar
models that can be driven by novel motions and rendered with generative appearances for lifelike animation and
multi-modality manipulation.

8.2.1 Human reconstruction

Human reconstruction aims to create a digital 3D model of a human from various forms of input data, including
images, videos, or depth scans. Techniques for human reconstruction can be divided into traditional and modern
reconstruction based on the input data type and methods used.

Traditional reconstruction methods usually rely on complex hardware devices to capture observation data of the
target human body, such as multi-view images and depth information. Based on the data collected by human
capture systems consisting of multiple arranged industrial cameras and depth cameras, researchers employ the
structure from motion (SfM) [350] technique to determine camera poses, use the multi-view stereo (MVS) [351,352]
method to calculate depth information and exploit the depth fusion algorithms [353-356] to construct the 3D mesh
model. Schonberger et al. [357] proposed a per-pixel camera view selection strategy based on the PatchMatch [358]
framework in the MVS stage to enhance dense reconstruction, achieving more accurate reconstruction of fine
structures and weak texture areas such as human hair and skin.

Though achieving good performance, the high computational complexity of traditional pipelines renders them
unsuitable for real-time interactive applications. Therefore, modern methods utilize depth maps acquired by depth
sensors for real-time reconstruction through direct depth fusion. DynamicFusion [359] first achieves dynamic hu-
man body reconstruction from a single depth camera, but it encounters difficulties when handling fast movements
and matching depth maps with the previous frame’s model. DoubleFusion [360] uses the skinned multi-person
linear model (SMPL) [361] to capture human motions and use it as a regularization term to constrain the opti-
mization process of the deformation graph, preventing it from getting stuck in local optima. However, since the
SMPL model does not encompass clothing dynamics, its optimization of the deformation graph for loose clothing
remains constrained. Motion2Fusion [362] uses high-speed depth sensors to reduce the motion amplitude between
frames, enabling more accurate deformation graph recovery. RobustFusion [363] introduces a data-driven model
reconstruction algorithm, achieving high-quality dynamic human reconstruction using a monocular RGB-D camera.
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Table 8 Summary of studies related to animatable avatar.

Classification Method

Venue

Representation

Input data

Neural Body [368] CVPR 2021 NeRF Sparse-view videos
MetaAvatar [369] NeurIPS 2021 Neurl SDF Monocular depth images
Neural-GIF [370] ICCV 2021 SDF 3D scans
LEAP [371] CVPR 2021 Occupancy field 3D pose
SCANimate [372] CVPR 2021 Implicit function 3D scans
SNARF [373] ICCV 2021 Implicit surface 3D scans
Human avatar
Bagautdinov et al. [374] TOG 2021 CVAE 3D pose
Animatable NeRF [375] ICCV 2021 NeRF Multi-view videos
AvatarRex [376] TOG 2023 NeRF Multi-view video
HumanNeRF [377] CVPR 2022 NeRF Monocular video
Neural Actor [378] TOG 2021 NeRF 3D pose
Animatable Gaussian [379] CVPR 2024 3DGS Multi-view images
Jackson et al. [380] ICCV 2017 Voxel grid Single image
Feng et al. [381] ECCV 2018 2D UV position map Single image
Jiang et al. [382] IEEE TIP 2018 3D morphable model Multi-view images
Wu et al. [383] CVPR 2019 3D morphable model Multi-view images
Bai et al. [384] CVPR 2020 3D morphable model Multi-view images
. Yenamandra et al. [385] CVPR 2021 Implicit 3D morphable model 3D scans
Head/facial avatar
Wang et al. [386] IEEE TMM 2021 SDF Multi-view images
Zheng et al. [387] CVPR 2022 Implicit deformation field Monocular videos
Zhuang et al. [388] ECCV 2022 NeRF Single image
Hong et al. [389] CVPR 2022 NeRF Single image
AD-NeRF [390] ICCV 2021 NeRF Monocular videos (including audio)
Gao et al. [391] TOG 2022 NeRF Monocular videos
ClipFace [398] SIGGRAPH 2023 3D morphable model Text
Rodin [399] CVPR 2023 NeRF, diffusion model Text/image
Avatar with generative appearance DreamHuman [400] NeurlPS 2024 NeRF Text
imGHUM [401] ICCV 2021 SDF 3D mesh
HumanNorm [402] CVPR 2024 Diffusion model Text

Another way for human reconstruction is model-free, addressing the loose clothing limitation by predicting
occupancy values of a volumetric space. Pixel-aligned implicit function (PTFu) [364] aligns pixel-level local features to
the overall object context through fully convolutional operations and utilizes an MLP to infer depth and occupancy
values directly from these features. However, depth ambiguities from single-image inputs limit PIFu’s ability
to handle complex poses, and the quality of 3D datasets also restricts the effectiveness of PIFu-based methods.
The NeRF series [30,91,92] of studies offers users an easy way to create high-quality, renderable human models.
Users simply need to have the target person remain still and capture a set of images using a monocular camera
from various angles. These images can then be used to optimize the NeRF of the human body. For example,
DoubleField [365] combines the merits of both surface field and radiance field for high-fidelity human reconstruction
and rendering. Still, achieving real-time and high-quality reconstruction with NeRF under sparse view conditions
remains challenging. DiffuStereo [366] integrates the continuity of diffusion models with current learning-based
iterative stereo to achieve high-quality human depth estimation.

8.2.2 Animatable avatar

Human Reconstruction focuses on how to recover the 3D geometric information of the human body from 2D
image observations, achieving dimensionality upscaling. In contrast, the goal of animatable avatar modeling is
not only to obtain a 3D human reconstruction consistent with the image but also to enable new motion driving
and generate corresponding images. The driveability of the human body and head/facial models is crucial for
various VR applications containing digital humans, including immersive virtual meetings and virtual companions
that necessitate reconstructed digital humans controlled by human postures. The representative works are listed in
Table 8.

Human avatar. The SMPL and SMPL-X [367] models achieve driveability by the pose parameters 6. Based on
this, researchers have applied deformation techniques to obtain deformable 3D human models. Neural Body [368]
combines the SMLP model with NeRFs, integrating observations from different video frames using human priors
to reconstruct free-viewpoint videos from sparse-view videos. However, this method is unable to produce dynamic
details accompanying pose changes, such as clothing wrinkles, leading researchers to explore the use of implicit fields.
MetaAvatar [369] and Neural-GIF [370] map every point in space to a standard pose, such as the T-pose, using
inverse skinning methods, and then learn the non-rigid deformations of clothing in the standard pose. LEAP [371]
and SCANimate [372] use neural networks to learn forward and inverse skinning fields and impose cycle-consistency
constraints between them. To better adapt to new poses, SNARF [373] proposes a differentiable forward skinning
model that uses an iterative root-finding method to query any point’s corresponding position in the standard pose
within the pose space.

To achieve textured results, traditional methods typically begin by reconstructing a polygonal mesh model of a
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Figure 17 (Color online) Wang et al. [386] employed implicit differentiable rendering methods to model head geometry and incorporated priors
to enhance reconstruction accuracy and robustness.

specific object with textures and materials and then generating its motion, resulting in generally lower image quality.
Bagautdinov et al. [374] from Meta Reality Lab modeled dynamic geometry and appearance by decomposing the
driving signals, achieving the first high-fidelity human avatar modeling, which provides the possibility of obtaining
more realistic avatar images.

In recent years, neural volume rendering techniques have demonstrated advantages in rendering highly realistic
free-viewpoint effects for both static scenes and dynamic sequences. Some approaches use NeRF and deformation
fields to depict dynamic human bodies. Animatable NeRF [375] combines human pose parameters with skin weight
fields to form deformation fields, driving models based on skeletal skinning. AvatarRex [376] learns NeRF-based
full-body avatars from video data, providing expressive control over the body, hands, and face while supporting real-
time animation and rendering. HumanNeRF [377] decomposes dynamic scenes into standard static scene models
and deformation fields, integrating information from different times explicitly into static scene models through
deformation fields. This method reconstructs 3D dynamic human body models from sparse-view videos, surpassing
Neural Body. These methods decompose the dynamic human body into a deformation field based on inverse skinning
and a neural radiance field in a standard pose. By mapping the NeRFs of different poses into the standard space,
better pose generalization is achieved. However, these methods have limited capability in synthesizing appearance
details, making it difficult to generate realistic dynamic wrinkle changes. Therefore, Neural Actor [378] proposes
feature texture maps as additional input signals, encoding high-frequency appearance details onto 2D texture maps,
thereby reducing the learning burden of NeRF networks. Moreover, Animatable Gaussian [379] uses 2D CNNs and
3D Gaussian Splatting to create high-fidelity avatars, learning a parametric template from input videos that adapt
to loose clothing like dresses.

Head/facial avatar. The modeling of head avatars plays a crucial role in enhancing the realism of digital
humans, as the face provides rich personal information such as race, age, gender, emotions, personality traits, and
physical condition. Recent advancements have focused on improving the realism and accuracy of facial features.

Head avatar modeling based on explicit mesh representation utilizes parameterized facial models and various types
of inputs to construct facial models. Input data includes single images, multi-view images, and RGB videos. The
key to the 3D reconstruction from a single image is to establish correspondence from 2D-pixel points to 3D spatial
points. Jackson et al. [380] employed volumetric representation to model 3D facial models, designing a convolutional
neural network to directly regress 3D facial meshes from single facial images. Feng et al. [381] introduced a 2D
representation method named UV position mapping to record complete facial 3D positional coordinates. Jiang
et al. [382] combined bilinear facial models with shape-from-shading [26], proposing a three-stage hierarchical
processing approach to enhance facial detail expression capabilities. Multi-view 3D facial reconstruction improves
avatar accuracy; for instance, Wu et al. [383] and Bai et al. [384] incorporated geometric or appearance consistency
between multi-views, though such methods often require extensive 3D geometric data for training, with template
models performing poorly in hair reconstruction.

Head avatar modeling based on implicit geometry representation takes advantage of the flexibility and variability
of this representation method. Yenamandra et al. [385] first proposed a deep implicit 3D deformable model of
the complete head, employing signed distance fields to model head shapes, not only constructing front-facing
geometric structures, textures, and expressions representing identity but also modeling the entire head including
hair. Wang et al. [386] utilized signed distance field geometric representations, introducing facial priors, head
semantic segmentation information, and 2D hair direction maps for guided reconstruction, as shown in Figure 17.
Zheng et al. [387] employed implicit neural networks to learn 3D head geometry, representing deformations related
to expressions and poses through learnable blended shapes and skin weights.
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Head avatar modeling based on NeRFs generates high-fidelity portraits and expands application scenarios.
Zhuang et al. [388] introduced a NeRF-based head parameterization model MoFANeRF, achieving separate control
over appearance, shape, and expression, but the model cannot accommodate hairstyle modeling. Hong et al. [389]
proposed a generalized parameterized head model HeadNeRF, semantically decoupling the latent space of head
models according to attributes such as expression, shape, and lighting, enabling control over generated attributes
and some extent, facilitating the generation of different hairstyles. Guo et al. [390] addressed speech-driven NeRFs
with ADNeRF, using extracted speech features as conditional input to achieve cross-modal driving effects. Gao
et al. [391] further proposed a personalized semantic facial model, decomposing continuously varying head models
into disentangled low-dimensional spaces and semantically informative bases, drawing realistic head images under
given expression coefficients and viewing directions, enhancing facial retargeting and expression editing applications.
Some approaches generate videos of someone speaking based on input voice, including generating 2D speaking per-
son videos (StyleHEAT [392], Everything’s Talkin [393]), generating 3D digital avatar head geometry animations
(VOCA [394], CodeTalker [395]), and using NeRF's for voice-driven avatar heads (GeneFace [396], RAD-NeRF [397]),
among others.

Avatar with generative appearance. Creating realistic and detailed avatars with generative appearance is
another hot topic. For head avatar appearance, some methods use the CLIP for text parsing and utilize diffusion
models for supervised image generation or directly generate representations on three planes, such as ClipFace [398]
and Rodin [399]. For full-body avatar appearance, DreamHuman [400] introduces inGHUM [401] as a human
prior capable of handling loose garments with unique topologies, optimizes a NeRF network using fractionally
distilled sampling strategies, and focuses on rendering and optimizing each semantic part of the human body for
enhanced texture generation details. HumanNorm [402] is a novel approach for high-quality and realistic 3D human
generation by enhancing the model’s 2D perception of 3D geometry through normal-adapted and normal-aligned
diffusion models.

8.3 Awutonomous agent

The agent is an entity that is placed in an environment and senses different parameters that are used to make a
decision based on the goal of the entity. The entity performs the necessary action on the environment based on this
decision [27]. Agents possess sociability, allowing them to share knowledge and request information from others,
and autonomy, enabling independent decision-making and action. They also demonstrate proactivity by using their
history, sensed data, and information from other agents to predict future actions and take effective measures to
achieve their goals. In recent years, based on techniques such as reinforcement learning and large language model
(LLM), research related to agents has made significant progress in two main directions: crowd simulation and
autonomous agent.

8.3.1 Crowd simulation

Crowd simulation seeks to accurately replicate the motion dynamics of virtual agents, which plays an important
role in building realistic and believable virtual environments. Traditional simulation methods can be divided into
two categories: microscopic models and macroscopic models. The former focuses on the low-level behavioral details
and individual characteristics in the crowd, while the latter treats the crowd as a whole without considering the
interaction between agents [28].

In recent years, researchers have adopted data-driven approaches, including using data to calibrate the parameters
of the model and extracting behavioral paradigms from the data to improve the realism and stability of the simulation
while avoiding the cost of extensive manual modeling [18]. Earlier studies used neural network classifiers to cluster
the input states and select feasible behaviors within the clusters, greatly reducing the search space and time overhead
of traditional methods [403]. Wang et al. [404] used the neuro-evolution method for simulation, which does not
need to use real data to train the network, but it is difficult to ensure the realism of the simulation. Wei et al. [405]
proposed for the first time the direct use of neural networks to learn potential movement rules from real data, where
they extracted state-action pairs from the data and fed them into the neural network training. Unlike the previous
methods, Lee et al. [406] applied the reinforcement learning approach to crowd simulation by designing simple
reward functions to generate optimal policies without the need to adjust complex parameters for each scenario,
which is more generalizable. Further, Hu et al. [407] introduced the use of control parameters such as preferred
speed as input to the policy to generate heterogeneous behaviours for crowd simulations. Ref. [408] introduced
configurable crowd profiles that allow real-time control of agent parameters without the need to retrain the learned
model. Charalambous et al. [409] used double deep Q-learning’s reinforcement learning algorithm to learn reward
functions from input data and find optimal strategies for individuals during training with better generalization
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Figure 19 (Color online) The architecture in the work of Park et al. [411].

properties and performance optimization. Their pipeline is shown in Figure 18. These methods greatly enhance
the diversity of crowd behaviors and the heterogeneity of virtual crowds.

8.3.2 Autonomous characters

Trustworthy behavior of agents can enhance the experience of virtual interaction and has a wide range of applications
in various areas such as education and healthcare [410]. Unlike the physical behavioral simulation of intelligent
agents, there is also a need to endow them with sociality and autonomy. Early characters were mainly given
behavioral rules or scripts by designers, but this obviously does not allow for true autonomy and makes it difficult
to construct the complex processes by which they interact with each other. On the other hand, learning-based
approaches use a policy function to drive the agent but are mostly applicable to restricted environments, unlike the
open world in which humans live [19].

With the remarkable success of the large language model, LLM-based intelligences have more comprehensive
knowledge and are able to make informed autonomous behaviors despite the absence of context-specific data. The
pipeline of related research is mainly divided into four modules: profile, memory, planning, and action [19]. E.g., in
Figure 19, Ref. [411] utilized the powerful prompting function of ChatGPT to propose generative agents that are
able to memorize, retrieve, reflect, and interact with other agents, as well as plan and act through a dynamically
evolving environment. In general, the profile module reflects the basic psychological and summary information of
the character, which can be assigned manually [411,412], generated by LLM [413], and so on. The memory module
is designed to resemble the human mind and is divided into short-term and long-term memory. Refs. [414-416]
applied different hybrid long- and short-term memory architectures. The planning module empowers the character
to make reasonable and reliable decisions, and the action module translates the decisions into concrete behavioral
expressions [19]. This shows that the autonomous role design in generation based on Al technology has a wide
range of application prospects but also needs to consider moral and ethical issues [410].

To further enhance the emotional intelligence of autonomous agents in interactions, existing Al technologies
integrate deep learning and cognitive modeling to enable artificial systems to perceive, express, and adapt to
human emotions. Within the framework of affective computing, the core components include emotion perception,
emotion-aware expression, and agent emotion modeling [29], which work together to allow Al to naturally adapt to
users’ emotional states during interactions. Affective computing employs data-driven approaches and theory-driven
approaches. Data-driven methods [417] primarily rely on deep learning models such as CNN, LSTM, and GRU for
emotion recognition and generation, while theory-driven methods leverage psychological and neuroscience theories
to provide Al with more interpretable emotional models. Furthermore, multimodal affective computing combines
various perception channels, such as text, speech, facial expressions, and gestures, to improve the accuracy and
naturalness of emotion recognition [418].

Moreover, some techniques have been introduced to this field to make an agent’s behavior more aligned with
interaction requirements and enhance its explainability. Chain of thought (CoT) was originally developed in the
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field of natural language processing [419], and it employs a step-by-step reasoning approach to break down complex
problems into intermediate steps, thereby improving transparency and accuracy in the reasoning process. A recent
study [420] proposed the visualization of thought (VoT) prompting method, which induced spatial reasoning in LLMs
by visualizing the reasoning trajectory, thus guiding the subsequent reasoning steps. The utilization of visualization
techniques can also help humans better understand the reasoning logic of A, thus increasing its transparency and
credibility.

Recent research increasingly focuses on enabling agents to take proactive roles in interactions. Notable studies
include proactive agent [421], which enhances agents’ ability to autonomously anticipate user needs and proac-
tively provide services by leveraging environment perception, user need prediction, and autonomous task execution.
This is achieved through constructing the ProactiveBench dataset, fine-tuning large language models, and training
reward models, ultimately improving interaction fluency and user experience. Similarly, proactive conversational
agents [422] enhance proactive interaction by anticipating user needs, actively guiding conversations, and optimizing
interaction pacing, resulting in more natural, efficient, and user-aligned conversational experiences.

9 Interaction

Human-computer interaction in virtual reality consists of interactions between the user and virtual objects, avatars,
and environments, as well as the user’s subjective perceptions. In recent years, much research has focused on using
AT techniques to enhance these interactions in various ways. Specifically, this includes three main directions. The
first is user behavior recognition in virtual reality environments since accurate behavior recognition is essential
to enable virtual reality systems to respond appropriately to user behavior. Second is interaction optimization,
which focuses primarily on improving user actions and behaviors in virtual space. Finally, perception analysis
and augmentation focus on analyzing the user’s perceptions during interactions to enhance the system’s ability to
provide a more immersive and responsive experience, ultimately improving user engagement and satisfaction.

9.1 Behavior recognition

Users exhibit intentional behaviors through their hands, eyes, and facial. These behaviors and the intent behind
them are often complex and diverse. Accurately recognizing them can significantly improve the efficiency and
precision of human-computer interactions. In a virtual environment, we have an opportunity to thoroughly monitor
and analyze the inner meaning of human behavior in a controlled environment, which makes it especially well-suited
for data-driven AI algorithms. We will review the work for recognizing and tracking users’ behaviors and identify
the underlying intentions that drive them. In Table 9, we compare the algorithms and hardware devices used across
different areas of behavior recognition.

9.1.1 Tracking and recognition

The purpose of tracking and recognizing user behavior in VR is to accurately and quickly identify interactive inputs
so that the correct feedback can be provided in a timely manner to enhance the overall user experience. This
tracking and recognition typically focuses on three key aspects: hand, eye, and facial. Mainstream algorithms
leverage neural networks, such as CNNs, to estimate the poses of these three aspects. Additionally, methods like
SVM and RF are employed for behavior regression and classification, ensuring precise and responsive interactions
in the virtual environment.

Hand tracking and recognition. Hand tracking and recognition play a crucial role in enhancing human-
computer interaction. However, due to the diverse range of hand movements and the complexity of interaction
environments, accurately tracking and recognizing hand movements remains a significant challenge. Several ex-
isting approaches focus on improving the model’s ability to handle occlusion using neural networks. Mueller et
al. [423] introduced a method to estimate hand pose using egocentric RGB-D cameras. Their approach involves two
sequentially applied CNNs that estimate the 2D position of the hand center and then regress 3D locations of hand
joints. Wang et al. [424] proposed a real-time method using a multi-task CNN for capturing both the skeletal pose
and 3D surface geometry of hands. By regressing multiple complementary pieces of information, their multi-task
CNN effectively addresses depth ambiguities in RGB data and accurately estimates pose and shape parameters for
both hands, as depicted in Figure 20. Han et al. [425] was the first to introduce a real-time hand-tracking system
using CNNs on four fisheye monochrome cameras aimed at enhancing VR experiences. They [426] later expanded
their work by developing a unified end-to-end framework for multi-view, multi-frame hand tracking that directly
predicts 3D hand poses in world space on a VR headset. This framework includes a 3D feature extractor module
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Table 9 Summary of studies related to behavior recognition.

Classification Method Venue Core technology Hardware device
Mueller et al. [423] ICCV 2017 Supervised learning RGB-D camera
Rgb2hands [424] TOG 2020 Supervised learning RGB-D camera
MEgATrack [425] TOG 2020 Supervised learning Fisheye camera
UmeTrack [426] SIGGRAPH Asia 2022 Supervised learning RGB-D camera
HOOV [427] CHI 2023 Supervised learning Headset, wrist-worn band
Hand tracking and recognition Diliberti et al. [429] MM 2019 Supervised learning Motion capture gloves
Arimatsu et al. [430] CHI 2020 Supervised learning Cont;fiigrm‘;’t’;hsccsgz‘t“’c
GestOnHMD [431] TVCG 2021 Supervised learning Stereo microphones

Jiang et al. [428] Virtual Reality 2018

ISMAR 2020

Supervised learning Force myography, Leap Motion
Eyeglasses with multiple RGB-D

cameras and LEDs

Lu et al. [432] Supervised learning

Wang et al. [433] ISMAR 2021 Unsupervised learning near-infrared camera

Gaze from origin [434] AAAT 2024 Unsupervised learning RGB-D camera
Eye tracking and recognition UVAGaze [435] AAAT 2024 Unsupervised learning Dual cameras
DGaze [436] TVCG 2020 Supervised learning Headset
SGaze [437] TVCG 2019 Optimization Headset
Stubbemann et al. [438] ETRA 2021 Supervised learning Camera of headset
Facial tracking and recognition Chen et al. [440] CVPR 2021 Supervised learning Phone
Teng et al. [441] VRCAI 2016 Supervised learning Headset with RGB-D camera
Where2Act [442] ICCV 2021 Self-supervised learning Simulation
AdaAfford [443] ECCV 2022 Supervised learning Simulation
LEMON [444] CVPR 2024 Semi-supervised learning RGB-D camera

Human-object interaction
EgoChoir [445] NeurIPS 2024 Headset

EgoLM [446] arXiv

Semi-supervised learning

Supervised learning Eyeglasses, motion sensors

Sun et al. [447] MM 2021 Semi-supervised learning Multiple cameras
Wang et al. [448] CVPR 2024 Supervised learning Simulation
Feng et al. [449] AIVR 2019 Supervised learning Headset
. . LiveDeep [450] IEEE VR 2020 Supervised learning Headset
Viewport analysis
Heyse et al. [451] IEEE VR 2019 Reinforcement learning Headset

Instant Reality [452]
Delvigne et al. [454]
Li et al. [455]

TVCG 2022
AIVR 2020
Virtual Reality 2021

Supervised learning Headset, traditional screen
Headset, EEG

Headset

Supervised learnin
Attention prediction pervi me
Supervised learning

that processes single-view or multi-view data to generate 3D features via a feature transform layer and a pose
regression module for producing 3D hand pose information.

Some research has utilized information provided by hardware devices to aid neural networks in classification and
recognition tasks. Streli et al. [427] introduced HOOV, a hand out-of-view tracking method that leverages multi-
modal information, including the 3D orientation of the wrist and head pose, as inputs to an RNN and transformer-
based model for hand position prediction. This approach enables VR users to interact with objects outside their
field of view. Similarly, Jiang et al. [428] combined force myography and leap motion signals as multimodal inputs,
employing SVM, decision trees, and neural networks to recognize hand-grasping actions in virtual reality environ-
ments. Diliberti et al. [429] applied CNNs to 3D rotation data of finger joints obtained from motion capture gloves
to classify user gestures and intents. Arimatsu et al. [430] designed a finger-tracking controller with capacitive
proximity sensors to recognize hand movements and developed a dual CNN architecture to estimate hand pose.
Chen et al. [431] proposed a gesture-based interaction technique utilizing stereo microphones in mobile phones to
detect gestures on VR headsets, employing CNNs for gesture detection and recognition.

Eye tracking and recognition. Eyes enable users to explore and interact with the virtual world, making eye
tracking and recognition essential for accurately displaying virtual content and supporting interactive behaviors that
require high precision. Lu et al. [432] introduced an eye-tracking solution based on high-order Purkinje reflection
images, using an end-to-end CNN to map the characteristics of these images to the vergence and accommodation
of the eyes. Recognizing that critical information is often concentrated in edge areas, Wang et al. [433] developed
an edge extraction network, leveraging edge generation networks and adversarial learning to predict edge maps.
These maps are then fed into an edge-guided segmentation and fitting network based on an MLP to accurately
segment and fit ellipses. Additionally, they [434] implemented a gaze estimation network and a gaze frontalization
module to rotate the eyeballs toward the front camera, enhancing gaze estimation performance. Furthermore, they
proposed an unsupervised gaze estimation framework, adapting the classic single-view estimator based on neural
networks to work with dual cameras [435]. Some research focuses on predicting gaze from eye-tracking data. Hu
et al. [436] introduced DGaze, a multimodal CNN-based model that integrates object position sequences, head
velocity sequences, and saliency features to predict users gaze positions within the viewport of a head-mounted
display. Their model achieved an average angular distance error of 7.57°. To tackle the challenge of limited data,
Stubbemann et al. [438] employed cycle-GAN for augmenting eye-tracking images and introduced a new training
dataset as input for CNNs to predict volumes of interest.

Facial tracking and recognition. Facial tracking and recognition in VR encompasses both face tracking and
reconstruction, as well as the recognition of facial expressions with users wearing a head-mounted display. Neural
networks are commonly employed in the tracking and recognition of VR users’ faces. In the early stages of research,
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Figure 20 (Color online) RGB2Hands model in the work of Wang et al. [424]. The RGB input image is processed by neural predictors that
estimate segmentation, dense matching, intra-hand relative depth, inter-hand distances, as well as 2D keypoints. This is then used within our
two-hand tracking energy minimization framework. The outputs are pose and shape parameters of the 3D MANO model of both hands.

Girado et al. [439] introduced a video-based, real-time, low-latency, high-precision 3D facial tracker. This system
utilized a central camera and artificial neural networks to pinpoint 2D facial positions and to identify and track
upright, tilted, frontal, and non-frontal faces in visually cluttered environments. Building on this, Chen et al. [440]
applied deep learning illumination models based on VAE and MLP to recover accurate texture and geometric details
from images captured in the wild. They combined these with advanced 3D facial tracking algorithms to enable
subtle and robust facial motion transfer, effectively transforming ordinary videos into highly realistic 3D avatars.
Facial expression recognition in VR presents an ongoing challenge, particularly because the upper half of the face is
often obscured by an HMD. To address this, Teng et al. [441] processed facial data by segmenting the mouth area
and then trained a CNN using this processed mouth information to detect expressions.

9.1.2 Intention recognition

Human behavior in VR often reflects specific underlying intentions. By extracting and analyzing these intentions,
designers can tailor experiences to meet users’ personalized needs, especially when working with VR devices that
have limited performance capabilities. Current research in this area primarily focuses on user viewport analysis and
attention prediction.

Human-object interaction. Human-object interaction involves understanding interactions within scenes, the
objects present, and the underlying intentions driving these interactions. Some research has specifically focused
on human-centric interaction understanding. These studies primarily leverage deep learning to train models for
mapping affordance [442,443], though many of these models lack contextual consideration of human interactions.
Yang et al. [444] exploited the correlation between the interaction counterparts. They used an interaction intention
excavation module, curvature-guided geometric correlation module, and contact-aware spatial relation module based
on cross attention and transformer to jointly anticipate human contact, object affordance, and human-object spatial
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relation. Recently, with the rise of embodied Al, researchers have begun to consider using egocentric information as
input. Yang et al. [445] employed modality-wise encoders to extract features from egocentric video, head motion,
and object information. These features were then used in a parallel cross-attention framework to uncover interaction
concepts and infer the subject’s intentions. Incorporating multi-modal sensors, Hong et al. [446] combined sparse
motion sensors and egocentric video inputs to prompt LLM for ego-motion tracking and understanding. Other
studies have focused on generating virtual human activities based on interaction understanding. Sun et al. [447]
proposed an interaction-aware human-object capture framework that integrates occlusion-aware implicit human
reconstruction, human-aware object tracking, and neural blending to generate human activities from novel perspec-
tives. Wang et al. [448] leveraged scene affordance as an intermediary to link 3D scene grounding with conditional
motion generation, enabling the synthesis of human motion guided by language.

Viewport analysis. Scenes and videos in VR are highly data-intensive and are often streamed in real-time,
posing significant challenges for bandwidth management. Researchers frequently analyze the user’s viewport to
prioritize the transmission of relevant areas, thereby optimizing the delivery process. Feng et al. [449] investigated
the use of CNNs to predict user viewports during live streaming, leveraging the dynamic propagation characteristics
of VR content. Their experimental results indicated that this method could reduce bandwidth usage by 57%.
Building on this, they proposed LiveDeep [450], a hybrid model that combines CNN and LSTM to create an online
viewport prediction system. Heyse et al. [451] adopted a two-stage reinforcement learning approach using contextual
bandits, which involved movement detection and direction prediction to predict the user’s viewport in 360-degree
video. Similarly, Chen et al. [452] employed neural networks to estimate the perceptual importance in the 2D image
space based on the user’s gaze behavior, such as where the user gazes and how the gaze is moved. Then, they
mapped this importance to 3D object space for optimizing rendering.

Attention prediction. Attention is a limited scarce resource that users deploy to navigate complex scenes and
extract valuable information. Generally, attention analysis in VR environments uses data from eye-tracking and
head position sensors embedded in head-mounted displays. Khokhar et al. [453] utilized features collected from
VR headset sensors, including angular velocity, positional velocity, pupil diameter, and eye openness, to train a
CNN-LSTM classifier capable of detecting distracting objects. Expanding on the traditional focus on head position
and eye movement, Delvigne et al. [454] incorporated EEG signals into their model inputs and used a combination
of CNN, SVM, RF, and MLP to estimate attention scores. Li et al. [455] further enhanced attention prediction by
accounting for the spatial and temporal characteristics of user behavior, integrating contextual information through
a hybrid LSTM-CNN model. Fathy et al. [456] argued that lighting features significantly influence visual attention
and perception, thus incorporating luminance and contrast data into an ensemble bagged tree model to estimate
user attention levels.

9.2 Interaction optimization

Interaction, which includes both motion and manipulation, is a critical aspect of VR. The main challenge in opti-
mizing interactions is to improve naturalness and efficiency within the constraints of available hardware. Research
on interaction optimization mainly involves the directions of motion retargeting and manipulation assistance.

9.2.1 Motion redirection

The limitations of physical space and hardware in VR can restrict the user’s movement and tactile experience,
breaking their immersion in the virtual world. Motion redirection seeks to overcome these limitations by exploiting
the dominance of visual perception to create the illusion of physical feedback. This is achieved through techniques
that subtly manipulate the user’s movements, effectively expanding the perceived physical space. The two main
categories of motion redirection are redirected walking and haptic retargeting.

Redirected walking. Redirected walking technology allows users to explore vast virtual spaces without the
need for large areas of physical space. Reinforcement learning, with its capacity for continuous learning and strategy
adaptation, is often employed to handle the complexity of dynamic scenes in redirected walking. Strauss et al. [457]
utilized reinforcement learning to train a deep neural network that directly prescribes rotation, translation, and
curvature gains, transforming the virtual environment based on the user’s position and orientation within the tracked
space. Similarly, Chen et al. [458] employed reinforcement learning with a novel dense reward function to jointly
consider physical boundary avoidance and consistency of user-object positioning between virtual and physical spaces
(Figure 21). They [459] further extended their method for virtual-physical environmental alignment at multiple
transferable target positions in passive haptic tasks with novel reward function designs. Lee et al. [460] presented a
novel control algorithm called steer-to-optimal-target (S20T) for real-time planning in redirected walking, designing
and training a machine learning model using reinforcement learning and deep Q-learning to estimate optimal steering
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Figure 21 The comparison of different redirected walking methods, which include no redirection (NONE), redirection with ubiquitous passive
haptics (UPH), redirection with reactive environmental alignment (REA), and passive haptics with reinforcement learning (PHRL) in the work
of Chen et al. [458].

targets. Subsequently, they extended the S20T approach to multi-user application scenarios. Jeon et al. [461]
also explored multi-user scenarios and proposed an optimal space partitioning (OSP) method that dynamically
divided the shared physical space in real-time using deep reinforcement learning to allocate optimal sub-spaces
to each user and provided optimal steering. Azmandian et al. [462] introduced a static planning strategy called
combinatorially optimized pre-planned exploration redirector (COPPER), which optimizes gain parameters for a
predetermined virtual path. They conducted a simulation-based experiment demonstrating how adaptation rules
could be determined empirically using machine learning. Cho et al. [463] proposed a data-driven path prediction
model using LSTM networks trained on user path data collected from a maze-like environment.

Haptic retargeting. Haptic retargeting maps multiple virtual objects onto a few physical props, providing
passive haptic feedback by subtly adjusting the virtual environment to align with the real world. Initial approaches
focused on predicting user interactions and providing corresponding haptic feedback based on predefined scripts.
To extend haptic feedback to interactions with remote objects, the FlyingHand method [464] integrated multimodal
perception. It utilized CNNs for object classification based on images captured by drones, providing virtual hand-
haptic feedback that aligns with the objects. Yixian et al. [465] introduced ZoomWalls, which uses SVM to predict
the surface the user is about to touch based on their direction and walking speed. Clarence et al. [466] enhanced
the flexibility of interactive object selection by developing unscripted retargeting. They trained LSTM networks
on users’” hand-reach trajectories to predict their intended targets. Salvato et al. [467] tackled the issue of sense-to-
actuation latency in haptic feedback by introducing a self-attention-based network. This network used a time series
of tracked hand poses and virtual object geometry to predict when a user would begin interacting with a virtual
object through touch.

9.2.2  Manipulation assistance

Manipulation assistance aims to enhance the efficiency and precision of user interactions in VR. The core idea
is to leverage contextual information to improve interaction accuracy and intelligence. This includes contextual
assistance and selection optimization.

Contextual assistance. Providing contextual assistance in virtual environments can significantly enhance
user capabilities and improve their overall experience. For instance, Ge et al. [468] developed a tool for precise
assistance during Deep Anterior Lamellar Keratoplasty, which accurately tracks corneal contours using SVM for
data annotation and a combination of U-net and CNN for tracking. However, excessive assistance can disrupt the
user’s experience, reducing immersion. To address this, Alghofaili et al. [469] developed an adaptive navigation
assistance system that leverages multimodal information. They utilized a dataset containing user gaze data and
orally requested information to train an LSTM network. This network classifies gaze sequences to determine when
assistance is required, providing support only when necessary. Seeliger et al. [470] introduced context-adaptive
visual cues to minimize visual noise caused by assistance in industrial environments. They employed a deep neural
network to decide whether to display assistance based on context related to the user and task, such as task progress,
task duration, and the user’s head movement.

Selection optimization. Selection in VR is a fundamental task, particularly in exploratory and visual analysis
of point clouds and scatter plots. However, VR often struggles with accurate selection due to issues like occlusion
and data similarity. Chen et al. [471] addressed these challenges with LassoNet, a hierarchical neural network
that learns the mapping between point clouds, viewpoints, and lassos to facilitate the accurate selection of 3D
point clouds. Cordeil et al. [472] proposed an interactive machine learning framework to tackle the 3D point cloud
selection problem. This framework uses human-in-the-loop classification dialogue to iteratively classify point clouds,
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leveraging PCEDNet [473] to enhance selection accuracy.

9.3 Perception analysis and enhancement

Perception is central to shaping the user experience and interaction within virtual environments, as it directly influ-
ences not only the degree of immersion but also overall user satisfaction. By analyzing various aspects of perception,
such as emotional responses and susceptibility to motion sickness, developers can fine-tune virtual experiences to
minimize discomfort and maximize engagement. Furthermore, enhancing perception through advanced content de-
sign and personalized experiences allows for the creation of more dynamic and adaptive virtual worlds tailored to
meet the specific needs and preferences of individual users.

9.3.1 Perception analysis

Perception analysis utilizes physiological indicators to assess emotions and predict motion sickness. The core of this
process lies in processing information and creating regression models of user perception through machine learning
and deep learning. The primary directions of focus include affective computing and motion sickness prediction.

Affective computing. Human behavior is deeply influenced by emotions, which play a crucial role in how indi-
viduals perceive and react to different situations. Affective computing aims to model and respond to these emotional
states. Some research has utilized multimodal signals collected from various physiological sources, such as the brain,
heart, and skin. For example, Marin-Morales et al. [474] fused multimodal signals, including electroencephalography
(EEG) and electrocardiography (ECG), to train an SVM for predicting users’ valence and arousal. Building on
this, Gupta et al. [475] expanded the approach by incorporating additional input signals and regression models to
improve classification accuracy. Their system, AffectivelyVR, identifies personalized emotions in real-time within
virtual environments by training various regression models, including SVM, KNN, RF, and Gaussian Naive Bayes,
using off-the-shelf EEG and galvanic skin response (GSR) sensors. Some studies also combine affective computing
with specific application domains. For instance, Salkevicius et al. [476] developed a framework for predicting anxi-
ety levels during virtual reality exposure therapy (VRET) using wristband sensors to process GSR, blood volume
pulse (BVP) and skin temperature signals. These signals are fed into an RF model, and the extracted features are
classified using SVM to determine the user’s anxiety level. Vaitheeshwari et al. [477] analyzed soldiers’ stress levels
by simulating real battlefield conditions in VR. They employed LSTM (long short-term memory) and CNN with
inputs from ECG, GST, and eye-tracking signals, assisting SVM and RF models in regressing stress levels.

Motion sickness prediction. Motion sickness, a common discomfort experienced by users of HMD, limits
the immersive potential of VR. Despite its prevalence, the mechanisms behind motion sickness are not yet fully
understood. Martin et al. [478] proposed a machine learning model to non-invasively detect vertigo in real-time.
They trained SVM, Gradient Boosting, and RF models using sensor data and user-reported responses to predict
motion sickness, with RF achieving the best results. Liu et al. [479] developed a framework for predicting motion
sickness scores, utilizing CNN, ECA, and LSTM models to automatically analyze EEG signals and predict sickness
levels.

9.3.2  Perception enhancement

Perception enhancement focuses on improving user perception through rich content and personalized experiences.
By incorporating Al algorithms, virtual environments can become more intelligent and user-specific. Perception
enhancement involves two directions: interactive content design and personalized experience.

Interactive content design. Interactive content design involves creating and optimizing interactive objects,
virtual avatars, and narratives within the VR environment. The design of VR content significantly influences users’
sense of perception. To enable non-player characters (NPCs) to respond intelligently to participant’s interactions,
Dobre et al. [480] collected data on user interactions with NPCs and trained a reinforcement learning algorithm,
PPO [481], enhanced with LSTM for temporal memory to improve accuracy. Zhao et al. [482] combined LLM with
a virtual city, allowing participants to interact with LLM-driven characters in VR to simulate real-life language-use
scenarios, which reduced barriers to learning and improved learning efficiency. Alghofaili et al. [483] optimized
VR design by focusing on computational attention. They proposed a novel data-driven optimization method that
predicts gaze duration using decision trees, RF, and SVM, and utilizes a Markov chain Monte Carlo technique to
optimize the placement of elements within the virtual environment, maximizing user attention.

Personalized experience. VR holds significant potential for creating personalized experiences tailored to
the unique needs of specific populations, such as children with disabilities or athletes undergoing rehabilitation.
These customized experiences not only enhance engagement and motivation but also contribute to more effective
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therapeutic interventions and training outcomes. To address the specific learning needs of children with disabilities,
Horbova et al. [484] used SVM to analyze student performance in VR and optimize teaching methods to improve
educational outcomes. Tayal et al. [485] introduced an innovative machine learning framework that integrates haptic
feedback to enhance sports training. This framework enhances the training experience by offering more immersive
and effective simulations. They applied the You Look Only Once algorithm with ensemble learning to analyze
athlete actions and Grey Wolf Optimization to provide real-time feedback, delivering athletes realistic experiences
of force, impact, and movement.

10 Discussion, challenges and future work

In this section, we briefly discuss the six previously reviewed sections, emphasizing key challenges and outlining
potential directions for future research. In addition, we address several related issues.

10.1 Advanced Al-generated content representation

NeRF and 3D Gaussian are two advanced Al-generated content representations. NeRF uses MLP for implicit neural
representation of the scene, while 3D Gaussian uses Gaussian sets for explicit representation of the scene. The core
of NeRF representation is to represent the scene as a function of 3D locations and viewing directions, i.e., radiance
field. The core of 3D Gaussian representation is to represent the scene as 3D Gaussian ellipsoids. Currently, the
3D Gaussian representation seems to be more suitable for VR applications than the NeRF representation. Because
3D Gaussian has higher rendering performance, it is suitable for real-time applications. Moreover, 3D Gaussian
explicitly represents the scene as a 3D Gaussian ellipsoid, which makes 3D Gaussian more suitable for editing
and interactivity. There is still some NeRF-related 3D work going on, such as 3D content editing, generation
and reconstruction. However, NeRF-related methods are more often used as image/video processing tasks such as
semantic segmentation, pose estimation, and compression. Although NeRF and 3D Gaussian have revolutionized
scene reconstruction and novel view synthesis, some challenges still need to be addressed.

e Memory requirements. Both NeRF and 3D Gaussian memory have high memory consumption during training
and rendering, especially 3D Gaussian, which can take up tens of GB. This poses a challenge for reconstructing
large-scale scenes and applications in virtual reality.

e Editability of content. As an implicit representation, NeRF cannot be directly edited, hindering fast user
interaction and limiting its use in interactive virtual reality. 3D Gaussian can support geometry editing to a certain
extent, but support for materials, textures, and other attributes remains to be investigated.

e Few-shot problem. Most existing NeRF and 3D Gaussian-based methods typically require a large number of
images from different viewpoints to model a scene accurately, which limits the use of these representations in VR.

In the future, it is critical to explore more rational and flexible 3D representations that can further improve
rendering quality, achieve high rendering performance, reduce storage space, improve edibility, and reduce the
amount of input data required.

10.2 Content rendering

Differentiable rendering techniques transform the traditional rasterization and ray tracing pipelines to support
the backpropagation of gradient information. NeRF uses a differentiable volume rendering pipeline with typically
implicit neural representations of scenes to synthesize images in new views. 3DGS uses a differentiable rasterization
rendering pipeline with typically explicit 3D Gaussian representations of scenes to synthesize images in new views.
There are several rendering techniques with neural models. As the pre-processing of scene contents, some materials
can be modeled by neural representations, and some further operations can be carried out upon them. During the
rendering procedure, neural networks can be used in path sampling for complex light transports or surface models,
such as sub-surface scattering and volume rendering. For post-processing, neural networks can enhance the image
quality after rendering by denoising or super-resolution technologies. The main challenges of content rendering
could lie in the following directions.

e Dynamic scene rendering. These existing content rendering methods can handle dynamic scenes, but they
require dynamic information during training, and for most VR applications, dynamic information cannot be obtained
in advance. For most VR applications, dynamic information cannot be obtained in advance. It is a great challenge
to render changing scenes efficiently and realistically based on dynamic information acquired in real time.

e High-frequency responses. Neural networks naturally tend to learn smooth and low-pass-filtered signals. How-
ever, the typical case in light transport can be of fairly high frequency.
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e Denoising with complex geometry. It is non-trivial to denoise complex geometries like hairs since some auxiliary
information, such as normal and depth, can be very difficult to obtain. The lighting condition is always extremely
complex due to the multiple bounces of rays, and the severe aliasing issue also exists.

In the future, it is worth investigating to propose new rendering pipelines for VR to render content more efficiently
and with higher quality, especially for dynamic scenes where dynamic information is not available in advance. It
is also important and interesting to explore generalized neural material models in the future, and some potential
advanced techniques may also have the opportunity to deal with high-frequency signals. In addition, denoising and
super-resolution techniques for complex structures are of great interest.

10.3 Content generation

Current paradigms for 3D content generation based on GANs and diffusion models include lifting 2D generative
models, using multi-view images as priors, and training 3D native generation models. Methods that lift 2D to 3D
capitalize on advancements in the 2D generation field, thus avoiding high training costs [195,196,205,206]. However,
these methods do not utilize viewpoint information, leading to poor consistency. Methods that impose multi-view
images as priors improve generation quality and speed by incorporating additional viewpoint information [207,208,
215,221]. Training directly on 3D priors provides the best results in terms of quality and speed, though these
methods are dependent on the chosen geometric representations and datasets [229,235,240]. Currently, methods
that train directly on 3D priors show the most promising prospects due to their compatibility with existing pipelines
and their geometry details. For instance, with 3D face data sampled from learned 3D GANs, deep neural networks
can be trained to construct realistic 3D face models from captured single-view facial images in real time. Although
these methods have approached human-level performance in single object generation tasks, there are still some
serious challenges to be addressed.

e Speed of the 3D content generation. Due to the iterative denoising process, the speed of diffusion models is slow
even when trained in the latent space. It is valuable to accelerate the denoising process through a good initialization
or a distillation strategy.

e Efficient management of generated 3D content. To meet user needs for combination and retrieval, especially
regarding the ability to understand multimodal inputs and perform cross-retrieval, efficient 3D-generated content
management, especially for large-scale scenarios, remains a pressing issue.

e Al systems integrating. Combining the generated 3D content with embodied AI systems to ensure effective
interaction with the physical world is also a challenging issue.

Addressing these challenges will require exploring more efficient data management techniques and more accurate
3D content modeling approaches to enhance the intelligence and utility of 3D content generation.

10.4 Physical simulation

Al-enhanced physics simulations have proven to be effective for a wide variety of physical phenomena, includ-
ing fluids, soft bodies, rigid bodies, and their various combinations. These methods rely on several fundamental
techniques in Al, including differentiable simulation, neural physics representation, and neural dynamics solvers.
Differentiable simulation ensures that the simulation remains a continuous process, allowing seamless integration
into neural networks as an efficient component with high transparency and interpretability. Many commonly used
algorithms, such as SPH, MPM, and projective dynamics, have been differentiated and successfully applied in var-
ious applications, including robot training, target optimization, and more. The fidelity of the physics simulation
relies on accurately tracking various Eulerian fields and Lagrangian attributes to represent the dynamic state of the
system. Recent advances in implicit neural representation, such as InstantNGP [34], neural flow map [287], and
neural stress field [277], offer efficient alternatives for encoding this physics information and provide the interface to
neural models. This is especially valuable for complex simulations involving cross-scale scenes and multiple physics
materials. The dynamics solver is the key component for encoding the laws of physics and is often the most time-
consuming part of the algorithm. Current neural dynamics solvers typically transfer the current parameter space
into latent space, learn to solve physics constraints using neural networks, and predict future evolution. A prevalent
concern regarding the use of Al in physical simulations pertains to the explainability of AT models. Traditional
physics processes are inherently transparent and grounded in well-established laws and numerical algorithms that
ensure robustness, whereas Al models often operate as black boxes despite their predictive capabilities. We analyze
this concern via three aforementioned techniques. First, differentiable simulations address this interpretability gap
by coupling physics-constrained frameworks with analytically derived gradients, enabling end-to-end traceability of
causal relationships. Second, advances in implicit neural representations demonstrate significant potential for en-
coding high-dimensional physical fields. Their interpretability lies in the inherent spatial structure and the compact
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network for localized function approximation. Third, the neural dynamics solver remains the most opaque compo-
nent, as it encodes high-dimensional approximations of complex, nonlinear physical processes. A common approach
to address this is by decomposing the end-to-end learning task into modular sub-steps. By isolating intermediate
states for systematic verification, this method recovers interpretable mechanistic analogs to conventional numerical
solvers. To further bridge Al-enhanced physics with VR applications, several challenges await consideration.

e High-performance simulation. The interactivity of VR applications hinges on real-time simulation, which
requires performance optimization through various strategies.

e Realistic reconstruction. Another crucial issue in VR is integrating virtual content with real-world scenes.
Leveraging Al techniques for highly dynamic physics reconstruction and re-simulation to provide realistic and
immersive physics content remains an important challenge.

e Customized physics simulation. VR users increasingly seek the ability to create and manipulate personalized
physics simulations tailored to their needs, enabling more interactive experiences. Achieving this may require
generative techniques to produce diverse and customizable physics phenomena.

After text, image, and video, we believe that 3D physics content will be the next key frontier driving advancements
in AI development. Efficient computation through fast converging neural algorithms, neural pre-computation,
and latent-space model to further improve the realism of physical phenomena reconstruction, customized physics
simulation through stylization, motion control, and text-to-physics are the directions worthy of subsequent research.

10.5 Virtual characters

The development of animatable avatar and autonomous agent technologies has made significant strides, with recent
advances in human motion generation, 3D avatar modeling, and autonomous character simulation. With the explo-
ration of human structural prior and the advancements of 3D representations such as deep implicit functions [231],
NeRF [30], and 3D Gaussian Splatting [35], the reconstruction of human models becomes more accurate and more
affordable under sparse-view or even monocular settings. Meanwhile, the advancements in generative models have
allowed for the creation of realistic and varied human motion sequences from text and audio inputs, and the imple-
mentation of complex decision-making processes in virtual environments driven by advanced large language models
or large multi-modality models. Despite these advancements, several challenges remain.

e Realistic avatar. High-fidelity clothing animation and subtle facial expression generation in avatars are still
challenging for existing learning-based solutions. This includes accurately modeling the complex dynamics of the
human body and learning the intricate details of human motion and facial expressions, which are essential for
creating believable and high-fidelity avatars.

e Emotion recognition and generation. Current technology makes it difficult to accurately capture and express
complex human emotions. Although LLMs bring a wealth of prior knowledge and multimodality, they still have
limitations in simulating human cognitive psychological characteristics, resulting in a lack of self-awareness in
conversational scenarios.

e Autonomous behavior. Like robots and embodied intelligence, the ability of virtual autonomous agents to infer
behavior depends on their deep perception and understanding of the environment, continuous knowledge learning,
long and short-term memory, and accurate decision-making. How to combine real data and large models for stable
and efficient modeling remains challenging. Moreover, the decision-making process of virtual agents remains opaque
and difficult to control. Most autonomous agents operate as black boxes, limiting users’ ability to understand or
modify their behavior intuitively. This lack of explainability hinders user trust and prevents effective fine-tuning
for different applications.

Looking towards the future, research and development on physically plausible avatar animation, avatars with
emotion, and intelligent autonomous agents are promising. It is interesting to develop more lifelike and engaging
avatars consistent with the laws of physics and human biomechanics. Future research could focus on developing
algorithms that can simulate the intricate details of muscle and clothing dynamics under various interactions with
surrounding humans and environments by combining state-of-the-art techniques in 3D representations such as 3DGS,
differentiable simulation, and large generative models. Furthermore, future research could explore the integration
of cognitive science and neuroscience into affective computing models. By leveraging cognitive architectures and
brain-inspired models, avatars can develop adaptive emotional responses that vary with user interaction history,
cultural background, and contextual cues. In parallel, the research of autonomous agents can further process a
large number of heterogeneous data from different acquisition devices, build human psychological cognitive models
to fine-tune LLMs, and improve the interpretability of the model so as to achieve dynamic real-time simulation
in the VR environment. Moreover, future research could focus on designing interactive explainability frameworks
where users can visually inspect an agents decision-making process, adjust behavioral parameters dynamically, and
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even simulate alternative actions in real-time. VR environments can serve as a testbed for AI model behavior
analysis, allowing researchers to evaluate and refine decision-making processes in immersive settings.

10.6 Interaction

Behavior recognition, interaction optimization, and perception analysis and enhancement are key research areas
for the use of Al techniques in interaction. Human-centered behavior recognition involves tracking and recognizing
physiological factors such as hand, gaze, and facial expressions, as well as inferring internal user intentions. In-
teraction optimization focuses on modeling and analyzing interaction characters of users to improve motion and
manipulation in VR environments. Perception analysis and enhancement primarily address emotional computing
and enhancing environmental experience.

Researchers commonly use neural networks to process complex physiological behavior recognition [424,471] and
apply regression methods such as LSTM [463], SVM [484], CNN [436] and so on to analyze user’s internal psycho-
logical factors. These methods predict and recognize user characters to assist interactions. Although AI provides
significant support in analyzing and enhancing user interactions, several challenges remain.

e Complex behavior recognition and prediction in high-frequency interaction scenarios. In immersive VR envi-
ronments, users often perform rapid, fine-grained movements, which generate high-dimensional, time-sensitive data
streams. The complexity of these interactions places significant challenges on recognition and prediction models,
especially when dealing with sensor occlusion, motion blur, and signal aliasing. These issues, combined with the
need for high accuracy and real-time processing, demand advanced models capable of handling the intricacies of
multimodal data in such dynamic settings.

e Design of natural and immersive efficient interactions. The transition from real world to virtual world interaction
methods remains challenging for multi-users, limiting the further development of VR. This calls for designing
interactions that enhance naturalness and immersion, thereby increasing user acceptance and satisfaction.

Future research should focus on deeply understanding the nature of interaction to generate profound insights that
enhance our comprehension of human behavior and perception. A critical area of focus will be achieving robust and
seamless recognition systems tailored to personalized user experiences. This will require continuous advancements in
both neural network architectures and multimodal data fusion methods, as they are essential for processing diverse
and complex data streams in real time. Moreover, exploring low-latency behavior recognition, intent prediction, and
interactive perception systems that maintain consistency and reliability across multiple sensory modalities (such
as visual, auditory, and haptic inputs) can also make a contribution to the field. A critical area of focus will be
the development of robust and seamless recognition systems tailored to personalized user experiences. Achieving
this goal will require continuous advancements in both neural network architectures and multimodal data fusion
techniques, as they are fundamental for processing diverse and complex data streams in real time. Additionally,
exploring low-latency behavior recognition, accurate intent prediction, and interactive perception systems that
ensure consistency and reliability across multiple sensory modalities will also contribute significantly to advancing
the field. Exploring these areas will contribute to enhancing the intelligence of VR systems, better meeting user
needs and expectations, and accelerating the adoption of VR.

10.7 Others

Data privacy and ethical issues. As VR technology advances in areas like virtual character modeling and
behavior simulation, data privacy and ethical concerns are becoming more significant. To ensure compliance, three
key aspects should be addressed. Ethical data collection should follow the principle of data minimization, collecting
only essential data while avoiding excessive biometric data collection. Users should be clearly informed about data
usage, storage, and sharing, with an option to withdraw consent at any time. Privacy protection measures should
include real-time anonymization and dynamic de-identification of user behavior data. Integrating trusted execution
environments in VR headsets ensures encrypted local processing of biometric data, preventing cloud transmission
risks. Role-based access controls and data retention policies should be established to enhance security. Additionally,
industry standards should be developed to establish a classification system for VR data and define protection levels,
ensuring robust security and ethical compliance.

Computational load balance. An important issue for Al in VR is how to balance the computational load. One
approach to mitigating computational load is through Al-driven optimization techniques, such as neural network
compression, model pruning, and knowledge distillation. By reducing the complexity of AT models, VR applications
can achieve real-time performance with lower latency and power consumption. Additionally, AI-powered predictive
algorithms can anticipate user interactions, enabling pre-rendering or adaptive resource allocation to enhance respon-
siveness. Adaptive rendering: Al can intelligently predict user gaze direction and interaction hotspots. Techniques
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such as foveated rendering optimize resource allocation by providing high-resolution images only where necessary,
reducing overall computational burden. Edge computing and cloud-based Al processing can also distribute the
computational burden, ensuring smooth and immersive VR experiences.

Metaverse. As an important milestone concept in the development of virtual reality, the development of the
metaverse has attracted more and more attention from researchers. We believe that artificial intelligence will play
a key role in shaping the future of the metaverse. First, artificial intelligence will enhance the immersive experience
of the metaverse. By creating a more realistic and dynamic virtual environment, artificial intelligence can make
the metaverse more attractive to users. Second, artificial intelligence algorithms can analyze user behavior and
preferences to provide personalized experiences. This can lead to more efficient and effective virtual interactions, as
well as better user engagement. Third, artificial intelligence can automate the process of generating and managing
virtual assets such as virtual goods and services. This can reduce the cost and time required for content creation
and enable more innovative and creative virtual experiences. Fourth, artificial intelligence can detect and prevent
malicious activities such as hacking and fraud and protect user data and privacy. This can build trust and confidence
among users and promote the healthy development of the virtual world.

11 Conclusion

With the rapid evolution of hardware and software technologies, VR technology is permeating diverse industries with
unparalleled reach and depth. Users’ aspirations for VR experiences have transcended basic immersion, heightened
interactivity, and imagination, now embracing system intelligence, seamless interconnectivity, and continuous evolu-
tion. Recent AI breakthroughs, notably in deep learning and neural rendering, have imparted a formidable impetus
to VR innovation, enriching its application scenarios and depths while offering advanced, efficient solutions tailored
to the escalating diversity of user demands. This convergence heralds a new era for VR, characterized by heightened
intelligence, interconnectivity, and adaptability. This review presents a comprehensive overview of Al-driven VR
research. Through meticulous search and screening, we have compiled 485 pertinent papers, 93% of which were
published during the AI renaissance sparked by deep neural networks, spanning 2018 to 2024. Guided by VR’s
core elements and pivotal research directions, we have categorized these articles, providing statistical insights and
trend analyses. We delve into a technical review and discussion of these categorized works, structured around six
key VR directions: advanced Al-generated content representation, content rendering, content generation, physical
simulation, virtual characters, and interaction, outlining their respective research pathways. We conclude with a
concise summary of these technologies, emphasizing ongoing challenges and proposing potential directions for future
research. It is our hope that this review will serve as a guiding resource, shedding light on the evolving landscape
of Al in virtual reality and offering valuable insights and inspiration to researchers working at the intersection of
these two fields.
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